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O�ine Change-point Analysis

First Aim

In the mean change-point univariate setting :

1 understand the information-theoretical scalings.

2 set up speci�cations for change-point procedures

3 exhibit several procedures achieving them.

Beaulieu et al.('12)

Second Aim

Start a roadmap towards more general
models with e.g. sparse multivariate
change point models.
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(Sub)-Gaussian univariate mean change-point Model

Data : Time series Y ∈ Rn

yi = θi + ϵi, where ϵi
ind.∼ SG(1) ,

where we assume that θ ∈ Rn is piece-wise constant.

We leave aside possible time dependencies

Notation : change-point vector τ∗

1 < τ∗1 < . . . < τ∗K ≤ n
s.t. θ is constant over [τ∗k , τ

∗
k+1).

Height ∆k = θτ∗
k
− θτ∗

k
−1

Radius rk =
(τ∗k+1−τ

∗
k)(τ

∗
k−τ

∗
k−1)

τ∗
k+1−τ

∗
k−1

≍ (τ∗k+1−τ
∗
k )∧(τ

∗
k −τ

∗
k−1).

De�nition of the Energy of τ∗k

The Square Energy of τ∗k is E2
k = rk∆2

k

l2 distance between θ and best approximation by a piece-wise constant vector on
τ (−k) = (τ∗1 , . . . , τ∗k−1, τ

∗
k+1, . . .).
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Two mathematical perspectives on change-point detection

Denoising/Estimation : Estimating θ ↝ small risk E[∥θ̂ − θ∥22]
Clustering/Segmentation : Recover the change-points τ∗.

Denoising perspective :
Minimax-Optimal rates (for K ≥ 2) K [1 + log ( n

K
)]

achieved e.g. by penalized least-squares [Birgé and Massart, 2001, Gao et al., 2020]

Quadratic computational complexity by dynamic programming...
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Change-point detection as a clustering problem

Several lines of literature :

At Most One Change-point (AMOC) [K ≤ 1]. Least-square estimator detects

K̂ = 1 if E1 ≫
√
log log(n) and ∣τ̂1 − τ∗1 ∣ = O(∆−21 ) [Csorgo and Horváth, 1997].

V.et al.('20) ↝ detection iif E1 ≥
√

2 log log( n
r1
).

Penalized Least-square Estimator. BIC penalty
[Yao and Au, 1989, Wang et al., 2020].

Greedy or Aggregation methods
Binary segmentation [Scott and Knott, 1974] = iterative bisection.
Many recent variants
[Fryzlewicz, 2014, Fryzlewicz, 2018, Wang and Samworth, 2018]
[Wang et al., 2020, Kovács et al., 2020, Cho and Kirch, 2019]

computational complexity O(n log(n)).
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Typical Results in the literature

Theorem (Typical modern result. sloppy version ;
[Wang et al., 2020, Fryzlewicz, 2018, Kovács et al., 2020])

If mink E
2
k ≳ log(n), then whp K̂ =K and

dH(τ̂ ,τ∗) = max
k=1,...,K

∣τ̂k − τ∗k ∣ ≲
log(n)
mink ∆2

k

But see [Frick et al., 2014] and [Cho and Kirch, 2019] for tighter results in di�erent
senses.

Questions :

Is mink E
2
k ≳ log(n) really necessary ?

What if a few change-points have a small energy ?

Is the second log(n) necessary ?
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Objectives

Two sub-problems

Change-Point Detection
= Detecting the existence of the

change-point

Change-Point Localization
= small estimation error

dH,1(τ̂ , τ∗k ) =minl ∣τ̂l − τ∗k ∣

Questions

What is the energy requirement for detection ?

How is the transition between detection and localization ?

Is penalized least-square optimal ? For which penalty ?
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1 Some Impossibility Results

2 Analysis of penalized least-square estimators

3 A Recipe for general Change-point Models
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Gaussian Change-point Detection
Simpler problem : testing θ = 0 versus

θ ∈ Θ[r, δ] = {θ ∈ Rn ∶ ∃τ such that θi = δ1i∈[τ,τ+r)} .

Segment

⌊ n
2r
⌋ possible positions

For each τ , su�cient statistic

Zτ = r−1/2∑τ+r−1
i=τ yi ∼ {

N (0,1)
N (r1/2δ,1)

If r ≪ n, then r = r1(1 + o(1)) = r2(1 + o(1)).

Proposition (Segment Detection ≈ [Arias-Castro et al., 2011])

If δ
√
r ≤
√
2(1 − o(1)) log[n/(2r)], then testing better than random guess is

impossible,

inf
T

P0[T = 1] + sup
θ∈Θ[δ,r]

Pθ[T = 0] ≥ 1 − o(1) .
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High-energy Change-points

κ > 1 ; q > 0.

De�nition

τ∗k is a (κ, q)-high-energy change-point if Ek(θ) > κ
√

2 log ( n
rk
) + q .

Remarks :

For small rk, then log(n/rk) ≍ log(n).
For small rk ≍ n, then log(n/rk) ≍ 1
The additive term q will play the role of a global probability.
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Gaussian Change-point Localization

Simpli�ed setting :

one change-point with known means µ = (µ1, µ2)
Two possible positions for τ∗ : τ or τ + x.

Su�cient statistic

Z = x−1/2∑τ+x−1
i=τ (yi−µ1) ∼ {

N (0,1)
N (x1/2∆,1)

Lemma (Lower bound for Localization ≈ [Wang and Samworth, 2018])

Write ∆ = µ2 − µ1. For any r ≥ 2,

inf
τ̂

sup
τ∗∈{2,...,n}

Pθ(τ∗,µ) (∣τ̂ − τ∗∣ ≥
r

∆2
) ≳ e−cr ,

Small ∆ : At best, ∣τ̂ − τ∗∣ ≍∆−2 and has a sub-exponential tail.

Large ∆ : At best, τ̂ = τ∗ with proba higher than 1 − c′e−c∆2
.
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Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability, then τ̃

(NoSp). No spurious change-point is detected :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∣{τ̃} ∩ ( τ
∗
k−1+τ

∗
k

2
,
τ∗k+τ

∗
k+1

2
] ∣ ≤ 1 , for all k in {2, . . . ,K − 1} ;

∣{τ̃} ∩ [2, τ
∗
1 +τ

∗
2

2
] ∣ ≤ 1 ; ∣{τ̃} ∩ ( τ

∗
K−1+τ

∗
K

2
, n] ∣ ≤ 1 .

(Detec). All high-energy change-points are detected.
For all k in [K], if τ∗k is a (κ, q)-high-energy change-point then

dH,1(τ̃ , τ∗k ) ≤min

⎧⎪⎪⎨⎪⎪⎩

τ∗k+1 − τ
∗
k

2
,
τ∗k − τ

∗
k−1

2
, c

log (1 ∨ n∆2
k) + q

∆2
k

⎫⎪⎪⎬⎪⎪⎭
.
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(Loc). High-energy change-points are localized at the optimal rate.
Any high-energy change-point τ∗k satis�es

P(dH,1(τ̃ , τ∗k )1A ≥ c
x

∆2
k

) ≲ e−x, ∀x ≥ 1 .
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Penalized least-square estimator

τ= vector of tentative change-points
Πτ = projector onto the space of piece-wise constant vectors with changes at τ

τ̂ = argmin
τ

Cr0(Y,τ) = argmin
τ
∥Y −ΠτY∥2 +L pen0(τ , q) ,

BIC Penalty penBIC(τ , q) = 2∣τ ∣ log(n)

Multi-scale penalty pen0(τ , q) = q∣τ ∣ + 2∑
∣τ ∣+1
k=1 log ( n

τk−τk−1
).

Remarks :

Additive Penalty ↝ dynamic programming (and its
re�nements [Killick et al., 2012])

Over-penalizes small segments.

Di�ers from complexity penalties penBM (τ , q) = (∣τ ∣ + 1)(1 + log(n/∣τ ∣)).
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Connection between CUSUM and Least-square penalty

De�nition (CUSUM Statistic)

For t = (t1, t2, t3), C(Y, t) = [Y[t2,t3) −Y[t1,t2)]
√
(t2−t1)(t3−t2)

t3−t1

Lemma (deletion of a change-point e.g. [Wang et al., 2020])

τ (−l) = (τ1, . . . , τl−1, τl+1, . . .)

∥Y −ΠτY∥2 − ∥Y −Πτ(−l)Y∥
2 = −C2[Y, (τl−1, τl, τl+1)] .

Cr0(Y,τ) −Cr0(Y,τ (−l)) = −C2(Y, (τl−1, τl, τl+1))

+L [2 log( n(τl+1 − τl−1)
(τl+1 − τl)(τl − τl−1)

) + q] .
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Local Optimality and uniform Control of the CUSUM

Consider τ such that
θ is constant on [τl−1, τl+1)

Goal : show that τ ≠ τ̂ ?

Cr0(Y,τ) −Cr0(Y,τ (−l)) = −C2(ϵ, (τl−1, τl, τl+1))

+L [2 log( n(τl+1 − τl−1)
(τl+1 − τl)(τl − τl−1)

) + q] .

τ ≠ τ̂ as long as C2(ϵ, (τl−1, τl, τl+1)) small enough.

Local Optimality ↝ Uniform bound for the CUSUM

Lemma (Multi-scale chaining ; in the spirit of [Dumbgen and Spokoiny, 2001])

Aq =
⎧⎪⎪⎪⎨⎪⎪⎪⎩
∣C(ϵ, t)∣ ≤ 2

¿
ÁÁÀ2 log( n(t3 − t1)

(t3 − t2)(t2 − t1)
) + q, ∀t = (t1, t2, t3)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

We have P[Aq] ≥ 1 − ce−c
′q .
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First Analysis of Penalized Least-square

High Energy condition : Ek(θ) ≳
√

log( n
rk
) + q

Proposition (V. et al. ('20))

For any L and q large enough, under Aq , the penalized least-square estimator τ̂
satis�es

(a) (NoSp) No Spurious Jump is detected.

(b) (Detec) All high-energy change-points τ∗k are detected

dH,1(τ̂ , τ∗k ) ≤min

⎧⎪⎪⎨⎪⎪⎩

τ∗k+1 − τ
∗
k

2
,
τ∗k − τ

∗
k−1

2
, κL

log (n∆2
k) + q

∆2
k

⎫⎪⎪⎬⎪⎪⎭

Remarks :

Allow arbitrarily low-energy jumps.

Local condition for high energy ↝ log(n/rk) (see
also [Frick et al., 2014, Chan and Chen, 2017])

Dependency in q is optimal with respect to the probability 1 − ce−c′q

Complexity-based penalties are highly suboptimal.
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Localization (Loc) by Penalized Least-squares

Proposition (V. et al. ('20))

Fix any L and q large enough. For any high-energy change-point τ∗k , we have

P(dH,1(τ̂ , τ∗k )1Aq ≥ c
x

∆2
k

) ≲ e−x ∀x ≥ 1 .

Remarks :

Recovers the optimal subexponential rate of order ∆−2k for a speci�c
change-point

Regional to Local phenomenon :
Detection= High-Energy Localization only depends on ∆k !

Localization errors of high-energy change-points behave nearly independently.
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Hausdor� and Wasserstein Loss

If ∣τ̂ ∣ = ∣τ∗∣, de�ne

dW (τ̂ ,τ∗) =
K

∑
k=1
∣τ̂k − τ∗k ∣

dH(τ̂ ,τ∗) =
K

max
k=1
∣τ̂k − τ∗k ∣

Corollary

Assuming that all change-points have high-energy, we deduce

E [dW (τ̂ ,τ∗)1Aq ] ≲
K

∑
k=1
(e−c

′′∆2
k ∧ 1

∆2
k

) ,

E [dH (τ̂ ,τ∗)1Aq ] ≲ max
k∈{1,...,K}

(Ke−c
′′∆2

k ∧ logK

∆2
k

) .

Remark : Hausdor� and Wasserstein rates are minimax optimal.
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Summary

Wrap-up :

Regional to Local phenomenon.

Low-energy change-points are (almost) unharmful.

Localization errors behave almost independently.

One versus Multiple change-points.
When K = 1, log(n/rk) conditions are replaced by log log(n/r1) conditions.

Possible Extensions/ Open Questions :

Heavier tail distribution, time dependencies :
↝ uniform control of the CUSUM (e.g.[Cho and Kirch, 2019])

Exact constant for detection ?

Similar results for two-steps bottom-up approach.
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1 Some Impossibility Results

2 Analysis of penalized least-square estimators

3 A Recipe for general Change-point Models
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A general change-point framework

Data : Random sequence Y = (y1, y2, . . . , yn) in some measured space Yn.
Notation : Pi ∈ P marginal distribution of yi.
Change-point Functional : Γ ∶ P → V.

Change-Points : changes in the sequence (Γ(P1),Γ(P2), . . . ,Γ(Pn))

Examples :

Gaussian mean Univariate change-point :
Y = R, P = {N (θ, σ2), θ ∈ R}, Γ(P) = ∫ xP(dx)
Gaussian mean multivariate
change-point [Chan and Chen, 2017, Wang and Samworth, 2018] :
Y = Rp, P = {N (θ, σ2Ip), θ ∈ Rp}, Γ(P) = ∫ xP(dx)
Semi-parametric median (or quantile) univariate
change-point : [Jula Vanegas et al., 2021]
Y = R, P = {Probability measure on R}, Γ(P) =median(P)
Non-parametric univariate change-point : [Padilla et al., 2019]
Y = R, P = {Probability measure on R}, Γ(P) = P
Gaussian Covariance multivariate change-point : [Wang et al., 2017]
Y = Rp, P = {N (0,Σ),Σ ∈ S+p }, Γ(P) = ∫ xxT P(dx)

Goal : Detecting the change-points τ∗1 , . . . , τ
∗
K

(leave aside the problem of localization)
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A generic bottom-up algorithm

We are given :

A collection (called a grid) G of (l, r) (location, scale) corresponding to
segments (l − r, l + r) ⊂ [1, n + 1]
E.g. Complete Grid GF = {(l, r) ∶ (l − r, l + r) ⊂ [1, n + 1]} ;
Dyadic Grid GD.

A collection of local homogeneity tests T = (Tl,r)
(H0,l,r : no change-point in (l − r, l + r))
equivalent to Γ(Pl−r) = Γ(Pl−r+1) = . . . = Γ(Pl+r−1)

Data: Local test (Tl,r)
CI = ∅ ; CP = ∅;
For r ∈ Scales
For l ∈ Locations s.t. Tl,r = 1
if [l − r + 1, l + r − 1] ∩ CI = ∅
then
CI ← CI∪[l−r+1, l+r−1];
CP ← CP ∪ {l};

end
return τ̂ag = CP

Dyadic grid

O(n) tests for dyadic grids

Di�ers e.g. from [Chan and Chen, 2017, Kovács et al., 2020] because intervals of
detected change-points are not allowed to intersect.
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From multiple tests properties to detection properties

Proposition

1 If FWER(T ) ≤ δ, then τ̂ag satis�es (NoSp) with probability higher than 1− δ.
2 Any change-point τ∗k detected by a local test Tl,rk with rk < rk/4, is detected

by τ̂ag and

dH,1(τ̂ag , τ∗k ) ≤ rk − 1 .

K∗ = collection of signi�cant change-points
≍ "with proba higher than 1 − δ, all τ∗k ∈ K

∗ detected by a suitable local test"

↝ With probability higher than 1 − 2δ, τ̂ag satis�es NoSp and Detects signi�cant
change-points.

General recipe :

Introducing a sensible notion of Energy

Optimal testing with respect to that energy.

Proper multiple testing correction to account for all tests in GD.
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Application 1 : Sparse Multivariate Change-Point Setting

Gaussian Multivariate Change-point Model

yi = θi + ϵi, where θi ∈ Rp and ϵi
iid∼ N (0, σ2Ip).

Objective : Detecting times τ∗1 , . . ., τ
∗
K such that θτ∗

k
≠ θτ∗

k
−1

(side information θτ∗
k
− θτ∗

k
−1 is possibly sparse)

[Wang and Samworth, 2018, Chan and Chen, 2017, Enikeeva and Harchaoui, 2019,
Liu et al., 2019]
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Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

E2
k = rk

∥θτ∗
k
− θτ∗

k
−1∥2

σ2

Local Homogeneity tests on [l − r, l + r)
1st Simpli�cation : two-sample tests over data in [l − r, l) versus [l, l + r).

2nd Simpli�cation : (possibly-sparse) signal detection test with multivariate CUSUM
statistics

Cl,r = [Y[l,l+r) −Y[l−r,l)]
√
2r

σ
∼ N [(θ[l,l+r) − θ[l−r,l))

√
2r

σ
, Ip]

Old toy detection Problem : [Baraud, 2002, Donoho and Jin, 2004, Collier et al., 2015]
↝ Higher-Criticism + χ2 type statistics (minimax optimal wrt sparsity s and p)

Not Su�cient : Ω(n) tests are considered
↝ one also needs optimal dependencies wrt Types I and II error probabilities :
e.g. variants of HC [Liu et al., 2019] ; see also Pilliat et al.('20).
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Optimal Detection

δ ∈ (0,1) ; sk sparsity of change-point τ∗k .

High-energy change-point

τ∗k is a high-energy change-point if E2
k ≥ cψn,p,sk,δ where

ψn,p,sk,δ = sk log
⎛
⎜
⎝
1 +
√
p

sk

¿
ÁÁÀlog( n

rkδ
)
⎞
⎟
⎠
+ log( n

rkδ
) .

Theorem (Pilliat et al.('20))

With probability higher than 1 − δ, τ̂ag achieves (NoSp) and (Detects) all
high-energy change-points τ∗k with E2

k ≥ c+ψn,p,sk,δ.

Conversely, no procedure achieving (NoSp) is able to (Detect) high-energy
change-points τ∗k with E2

k ≥ c−ψn,p,sk,δ

Remark : Generalizes asymptotic result of [Chan and Chen, 2017]. For K ≤ 1,
see [Liu et al., 2019].
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Application 2 : Covariance change-point detection

Gaussian covariance Change-point Model [Wang et al., 2017]

yi ∼ N (0,Σi) , i = 1, . . . , n

Objective : Detecting times τ∗1 , . . ., τ
∗
K such that Στ∗

k
≠ Στ∗

k
−1

Side information : maxi ∥Σi∥op ≤ B2 (for some known B)

Energy E2
k ∶= rk∥Στ∗

k
−Στ∗

k−1
∥2op.

Local test Tl,r = 1
⎧⎪⎪⎨⎪⎪⎩
∥Σ̂l,r − Σ̂l,−r∥op ≥ c0B2

⎡⎢⎢⎢⎣

√
p
r
+ p

r
+
√

log( 2n
δr
)

r
+ log( 2n

δr
)

r

⎤⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,
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Application 2 : Covariance change-point detection

Gaussian covariance Change-point Model [Wang et al., 2017]

yi ∼ N (0,Σi) , i = 1, . . . , n

Objective : Detecting times τ∗1 , . . ., τ
∗
K such that Στ∗

k
≠ Στ∗

k
−1

Side information : maxi ∥Σi∥op ≤ B2 (for some known B)

Energy E2
k ∶= rk∥Στ∗

k
−Στ∗

k−1
∥2op.

Local test Tl,r = 1
⎧⎪⎪⎨⎪⎪⎩
∥Σ̂l,r − Σ̂l,−r∥op ≥ c0B2

⎡⎢⎢⎢⎣

√
p
r
+ p

r
+
√

log( 2n
δr
)

r
+ log( 2n
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)

r
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⎫⎪⎪⎬⎪⎪⎭
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Optimal Detection

δ ∈ (0,1).

High-energy change-point

τ∗k is a high-energy change-point if E2
k ≥ cψn,p,rk where

ψn,p,rk ∶= B
4 [(p + log( 2n

rkδ
)) ∧ rk]

Theorem (Pilliat et al.('20))

With probability higher than 1 − δ, τ̂ag achieves (NoSp) and (Detects) all
high-energy change-points τ∗k , with E

2
k ≥ c+ψn,p,rk

Conversely, no procedure achieving (NoSp) is able to (Detect) high-energy
change-points τ∗k with E2

k ≥ c−ψn,p,rk

(Improves over the p log(n) condition of [Wang et al., 2017])
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Discussion

Main message

A simple reduction of change-point detection problems to multiple testing problems

Sloppy optimality statement

If each test Tl,r is minimax optimal (in some sense), then τ̂ag should (almost)
optimally detect (in some sense).

Open Questions

Localization rates require model-speci�c techniques.

For (sparse) high-dimensional change-points, there seem to exist several phase
transitions from regional to local

29/29



Discussion

Main message

A simple reduction of change-point detection problems to multiple testing problems

Sloppy optimality statement

If each test Tl,r is minimax optimal (in some sense), then τ̂ag should (almost)
optimally detect (in some sense).

Open Questions

Localization rates require model-speci�c techniques.

For (sparse) high-dimensional change-points, there seem to exist several phase
transitions from regional to local

29/29



Discussion

Main message

A simple reduction of change-point detection problems to multiple testing problems

Sloppy optimality statement

If each test Tl,r is minimax optimal (in some sense), then τ̂ag should (almost)
optimally detect (in some sense).

Open Questions

Localization rates require model-speci�c techniques.

For (sparse) high-dimensional change-points, there seem to exist several phase
transitions from regional to local

29/29



References I

Arias-Castro, E., Candès, E. J., and Durand, A. (2011).
Detection of an anomalous cluster in a network.
Ann. Statist., 39(1) :278�304.

Baraud, Y. (2002).
Non-asymptotic minimax rates of testing in signal detection.
Bernoulli, 8(5) :577�606.

Birgé, L. and Massart, P. (2001).
Gaussian model selection.
J. Eur. Math. Soc. (JEMS), 3(3) :203�268.

Chan, H.-P. and Chen, H. (2017).
Multi-sequence segmentation via score and higher-criticism tests.
arXiv preprint arXiv :1706.07586.

Cho, H. and Kirch, C. (2019).
Localised pruning for data segmentation based on multiscale change point
procedures.
arXiv preprint arXiv :1910.12486.

Collier, O., Comminges, L., and Tsybakov, A. B. (2015).
Minimax estimation of linear and quadratic functionals on sparsity classes.
arXiv preprint arXiv :1502.00665.

0/0



References II

Csorgo, M. and Horváth, L. (1997).
Limit theorems in change-point analysis.
John Wiley & Sons Chichester.

Donoho, D. and Jin, J. (2004).
Higher criticism for detecting sparse heterogeneous mixtures.
Ann. Statist., 32(3) :962�994.

Dumbgen, L. and Spokoiny, V. G. (2001).
Multiscale testing of qualitative hypotheses.
Annals of Statistics, pages 124�152.

Enikeeva, F. and Harchaoui, Z. (2019).
High-dimensional change-point detection under sparse alternatives.
Ann. Statist., 47(4) :2051�2079.

Frick, K., Munk, A., and Sieling, H. (2014).
Multiscale change point inference.
Journal of the Royal Statistical Society : Series B (Statistical Methodology),
76(3) :495�580.

Fryzlewicz, P. (2014).
Wild binary segmentation for multiple change-point detection.
The Annals of Statistics, 42(6) :2243�2281.

0/0



References III

Fryzlewicz, P. (2018).
Tail-greedy bottom-up data decompositions and fast multiple change-point
detection.
The Annals of Statistics, 46(6B) :3390�3421.

Gao, C., Han, F., and Zhang, C.-H. (2020).
On estimation of isotonic piecewise constant signals.
Ann. Statist., 48(2) :629�654.

Jula Vanegas, L., Behr, M., and Munk, A. (2021).
Multiscale quantile segmentation.
Journal of the American Statistical Association, pages 1�14.

Killick, R., Fearnhead, P., and Eckley, I. A. (2012).
Optimal detection of changepoints with a linear computational cost.
Journal of the American Statistical Association, 107(500) :1590�1598.

Kovács, S., Li, H., Bühlmann, P., and Munk, A. (2020).
Seeded binary segmentation : A general methodology for fast and optimal
change point detection.
arXiv preprint arXiv :2002.06633.

Liu, H., Gao, C., and Samworth, R. J. (2019).
Minimax rates in sparse, high-dimensional changepoint detection.
arXiv preprint arXiv :1907.10012.

0/0



References IV

Padilla, O. H. M., Yu, Y., Wang, D., and Rinaldo, A. (2019).
Optimal nonparametric multivariate change point detection and localization.
arXiv preprint arXiv :1910.13289.

Scott, A. J. and Knott, M. (1974).
A cluster analysis method for grouping means in the analysis of variance.
Biometrics, pages 507�512.

Wang, D., Yu, Y., and Rinaldo, A. (2017).
Optimal covariance change point localization in high dimension.
arXiv preprint arXiv :1712.09912.

Wang, D., Yu, Y., and Rinaldo, A. (2020).
Univariate mean change point detection : Penalization, CUSUM and optimality.
Electron. J. Stat., 14(1) :1917�1961.

Wang, T. and Samworth, R. J. (2018).
High dimensional change point estimation via sparse projection.
J. R. Stat. Soc. Ser. B. Stat. Methodol., 80(1) :57�83.

Yao, Y.-C. and Au, S. T. (1989).
Least-squares estimation of a step function.
Sankhy	a Ser. A, 51(3) :370�381.

0/0


	Some Impossibility Results
	Analysis of penalized least-square estimators
	A Recipe for general Change-point Models
	Annexe

