Optimal multiple change-point detection
and Localization

Nicolas Verzelen
INRAE, MISTEA, Montpellier

Joint work with A. Carpentier, M. Fromont,
M. Lerasle, E. Pilliat, and P. Reynaud-Bouret

https://arxiv.org/abs/2010.11470
https://arxiv.org/abs/2011.07818

RMR 2024 - June 20th

0/29


https://arxiv.org/abs/2010.11470
https://arxiv.org/abs/2011.07818

Offline Change-point Analysis

In the mean change-point univariate setting :
understand the information-theoretical scalings.
set up specifications for change-point procedures

exhibit several procedures achieving them.
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Start a roadmap towards more general
models with e.g. sparse multivariate
change point models.



(Sub)-Gaussian univariate mean change-point Model

Data : Time series Y € R™

yi = 0; + €5, where ¢; ‘& S6(1),

where we assume that 8 € R™ is piece-wise constant.

We leave aside possible time dependencies
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where we assume that 8 € R™ is piece-wise constant.

We leave aside possible time dependencies

Notation : change-point vector 7% —)7"
l<t{<...<T<n k
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(Sub)-Gaussian univariate mean change-point Model
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Data : Time series Y € R™
yi = 0; + €;, where ¢; gk Sg(l) 5

where we assume that 8 € R™ is piece-wise constant.

We leave aside possible time dependencies

Notation : change-point vector 7%

S —
1<t <...<7) <n Tk
st. 0 is constant over [r, 7 ,). | S S e
Height Ay =0, — 0, k
. (T =T (=T ) s *
Radius rj, = ~ktl k22 k k-l k
T+l Tho1 * Tk'+1

2 (T =TT =)

Definition of the Energy of 7}

The Square Energy of 7' is E‘g = rkA%

l2 distance between 6 and best approximation by a piece-wise constant vector on
—k
TER) = (T T )



Two mathematical perspectives on change-point detection

= Denoising/Estimation : Estimating @ ~ small risk E[|§ - ]3]

m Clustering/Segmentation : Recover the change-points 7%.
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Two mathematical perspectives on change-point detection

= Denoising/Estimation : Estimating @ ~ small risk E[|§ - ]3]

m Clustering/Segmentation : Recover the change-points 7%.

Denoising perspective :
Minimax-Optimal rates (for K > 2) K1 +log(%)]
achieved e.g. by penalized least-squares [Birgé and Massart, 2001, Gao et al., 2020]

Quadratic computational complexity by dynamic programming...
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Change-point detection as a clustering problem

Several lines of literature :
m At Most One Change-point (AMOC) [K < 1]. Least-square estimator detects
K =1if BE1 » \/loglog(n) and |71 - 77| = O(A7?) [Csorgo and Horvath, 1997].

V.et al.("20) ~ detection iif £y > | /2loglog(%).
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Change-point detection as a clustering problem

Several lines of literature :

m At Most One Change-point (AMOC) [K < 1]. Least-square estimator detects
K =1if BE1 » \/loglog(n) and |71 - 77| = O(A7?) [Csorgo and Horvath, 1997].

V.et al.("20) ~ detection iif £y > | /2loglog(%).

m Penalized Least-square Estimator. BIC penalty
[Yao and Au, 1989, Wang et al., 2020].

m Greedy or Aggregation methods
Binary segmentation [Scott and Knott, 1974] = iterative bisection.
Many recent variants
[Fryzlewicz, 2014, Fryzlewicz, 2018, Wang and Samworth, 2018]
[Wang et al., 2020, Kovacs et al., 2020, Cho and Kirch, 2019]

computational complexity O(nlog(n)).
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Typical Results in the literature
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Theorem (Typical modern result.  sloppy version ;
[ ; : 1)
If miny, E2 2 log(n), then whp K = K and

log(n)
dg(F,7*)= max [f -7, —%
(T, T”) k:l,...,K‘ = T ming Ai

But see [Frick et al., 2014] and [Cho and Kirch, 2019] for tighter results in different
senses.




Typical Results in the literature

Theorem (Typical modern result.  sloppy version ;

[ : : )
If miny, E2 2 log(n), then whp K = K and
log(n)
dg(F,7*)= max |[fp-75|S —>
H( ) k:l,..?(,K 7 = 7| ming Ai
But see [Frick et al., 2014] and [Cho and Kirch, 2019] for tighter results in different

senses.

Questions :
= s miny E,% 2 log(n) really necessary ?
m What if a few change-points have a small energy ?

m Is the second log(n) necessary ?
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Objectives

Two sub-problems

Change-Point Detection
= Detecting the existence of the
change-point

—>

*

*
Thk+1

6/29



Objectives

Two sub-problems

Change-Point Detection Change-Point Localization
= Detecting the existence of the = small estimation error
change-point dp 1 (F,7p;) = ming [7; - 777]
< <73
-
Tl
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T * T *
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Objectives

Two sub-problems

Change-Point Detection Change-Point Localization
= Detecting the existence of the = small estimation error
change-point dp,1 (7, 7)) = ming [T — 77|
< <7
-
_J ‘ ’
%
T, *
* Tk"'l * k Tk+1
Tk—1 Tk—1
Questions

m What is the energy requirement for detection ?
m How is the transition between detection and localization ?

m s penalized least-square optimal ? For which penalty ?
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Some Impossibility Results

7/29



Gaussian Change-point Detection

Simpler problem : testing 6 = 0 versus
0 € ©[r,6] = {0 € R™ : 37 such that 6; = 6Licr v | -

Segment
T
>
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Gaussian Change-point Detection

Simpler problem : testing 6 = 0 versus

0 cO[r,d] = {9 eR" : 37 € {n/4,n/4+r,n/4+2r, ..., 3n/4} such that 6; = 6]1iE[T,T+T)} .

Segment
T
| 5] possible positions
1) For each 7, sufficient statistic
N(0,1)
_ .—1/2 +r-1,_ . )

Zr=r PR N{ N(r/26,1)

T Ty
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Gaussian Change-point Detection

Simpler problem : testing 6 = 0 versus

0 cO[r,d] = {9 eR" : 37 € {n/4,n/4+r,n/4+2r, ..., 3n/4} such that 6; = 6]12-6[7,””} .

Segment
T
| 5] possible positions
10) For each 7, sufficient statistic
N(0,1)
— n—1/2 +r-1,_ . )
Zr=r PR N{ N(r/26,1)
T TS

If r<n, then r =r1(1+0(1)) =r2(1+0(1)).

Proposition (Segment Detection = [ D

If §3/7 <\/2(1 - 0(1)) log[n/(27)], then testing better than random guess is
impossible,

infPo[T=1]+ sup Pg[T'=0]>1-0(1) .

T 0e0[5,r]
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High-energy Change-points

k>1;q¢>0.

Definition

Ty is a (k,q)-high-energy change-point if E;(6) > ky/2log (%) +q .

Remarks :

m For small 7, then log(n/rg) < log(n).
m For small 7, x n, then log(n/rg) X 1

m The additive term ¢ will play the role of a global probability.
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Gaussian Change-point Localization

Simplified setting :
m one change-point with known means p = (u1, 12)

m Two possible positions for 7° : 7 or 7 + .

xr
>

Sufficient statistic N
/2110, o (07 1)
Z=x le-r (yz Nl) { /\/(xl/QA, 1)
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T

Lemma (Lower bound for Localization » [ D

Write A = po — p1. For any r > 2,

g = T -
inf  sup Po("’*yu)(|7_7*|ZE)ze er

T 1t*e{2,...,n}

Small A : At best, [7—7%| < A™2 and has a sub-exponential tail.
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Gaussian Change-point Localization

Simplified setting :
m one change-point with known means p = (u1, 12)

m Two possible positions for 7° : 7 or 7 + .

Sufficient statistic N
/2110, o (07 1)
Z=x Zz:‘l‘ (yz Nl) { N(]}I/ZA, 1)

T

Lemma (Lower bound for Localization » [ D

Write A = po — p1. For any r > 2,

g = T -
inf  sup Po("’*yu)(|7_7*|ZE)ze er

T 1t*e{2,...,n}

Small A : At best, [7—7%| < A™2 and has a sub-exponential tail.
Large A : At best, 7= 7* with proba higher than 1 - eeA?
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Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability, then 7

(NoSp). No spurious change-point is detected :

|{‘r} (Tk T %:H , forall kin {2,..., K -1} ;
|{T} [7T1+7'2:|’<1 |{T} (w,n]‘gl.
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Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability, then 7
(NoSp). No spurious change-point is detected :
|{?}n(% %H , forall kin {2,..., K -1} ;

a2 7] <1 ¢ (g ] 1

(Detec). All high-energy change-points are detected.
For all kin [K], if 7 is a (k,q)-high-energy change-point then

T =T, T -1, log(lvnA2)+q
d F,rl)<min{ Bk "k k-l . .
H,l( k) { 2 2 A2
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Desiderata for a suitable change-point procedure

Under an event A of high (to be discussed) probability, then 7

(NoSp). No spurious change-point is detected :
7} (Tk e Tk*%“gl forall kin {2,... K1} ;

[0 [2 55 ] |1 s [ o (B n] <1

(Detec). All high-energy change-points are detected.
For all k in [K], if 7 is a (k, q)-high-energy change-point then

A2

T* —* px X lo 1V’I’LA2 +q
dH,l(?,T;i)Smin{ k+12 kT 2;@_17 g ( 2) .

(Loc). High-energy change-points are localized at the optimal rate.
Any high-energy change-point 7, satisfies

P(dHl(‘r Tk)]lA>CA2)< e, Vr>1.
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Analysis of penalized least-square estimators
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Penalized least-square estimator

T= vector of tentative change-points
IT, = projector onto the space of piece-wise constant vectors with changes at T

7= argmin Cro(Y,7) = argmin | Y - TI. Y% + L peny(7,q) ,
T T

BIC Penalty pengrco(T,q) = 2|7|log(n)
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Penalized least-square estimator

T= vector of tentative change-points
IT, = projector onto the space of piece-wise constant vectors with changes at T

7= argmin Cro(Y,7) = argmin | Y - TI. Y% + L peny(7,q) ,
T T

BIC Penalty pengrco(T,q) = 2|7|log(n)
Multi-scale penalty peny(7,q) = gq|T| +2 Z:;l;l log ( Tk_zk N )
Remarks :

= Additive Penalty ~ dynamic programming (and its
refinements [Killick et al., 2012])

m Over-penalizes small segments.

m Differs from complexity penalties peng,,(7,q) = (|7| + 1) (1 + log(n/|7])).

13/29



Connection between CUSUM and Least-square penalty

Definition (CUSUM Statistic)
For t = (t1,t2,t3), C(Y,t) = [?[t2,t3) _?[tlth)] V %

14/29



Connection between CUSUM and Least-square penalty

Definition (CUSUM Statistic)
For t = (t1,t2,t3), C(Y,t) = [?[t2,t3) _?[tlth)] V %

Lemma (deletion of a change-point e.g. | D

T(il) = (7’17...,’7'1_1,7'14-1,“‘)

Y -TLY|? - |[Y -TI_) Y|? = -C*[Y, (11-1, 71, 7141)] -

Cro(Y,7) - Cro(Y, 7)) = —C*(Y,(m-1,7,7141))
+L [2 log ( U7t~ 7i1) ) + q] .

(riv1 =) (= 7-1)

14/29



Local Optimality and uniform Control of the CUSUM

]
|

Consider T such that -1 T TI+1

6 is constant on [7y_1,741)

Goal : show that 7+ 77 T Tht1
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Local Optimality and uniform Control of the CUSUM

]
|

Consider 7 such that -1 7 Tl4+1

6 is constant on [7y_1,741)

Goal : show that 7+ 77 T Tht1

Ti—1

Cro(Y,7) - Cro(Y, 7Dy = —C%(e,(n-1,71,7141))
+L[210g( (741 —71-1) )+q]

(Ti+1 =) (7 = 71-1)

T+ 7T as long as CQ(e7 (Tl_l,rl,THl)) small enough.
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Local Optimality and uniform Control of the CUSUM

] ] ]
i | |
T—1 T — e

41

Consider T such that
6 is constant on [7y_1,741)

Goal : show that 7+ 77 T Tht1
Th_1

Cro(Y,7) - Cro(Y, 7Dy = —C%(e,(n-1,71,7141))
+L[210g( (741 —71-1) )+q]

(Ti+1 =) (7 = 71-1)

T+ 7T as long as CQ(e7 (Tl—177'l77'l+1)) small enough.

Local Optimality ~ Uniform bound for the CUSUM

Lemma (Multi-scale chaining; in the spirit of [ 1

Ag = {|C(e,t)| < 2\I 210g(M) +q, Vt= (tl,tg,tg)} .

(ts —t2)(t2 —t1)

We have P[Aq] > 1 - ce<'1,

15/29



First Analysis of Penalized Least-square

16/29

High Energy condition : E}(0) 2 , /log(%) +q

Proposition (V. et al. ('20))

For any L and q large enough, under Ay, the penalized least-square estimator 7
satisfies

(a) (NoSp) No Spurious Jump is detected.
(b) (Detec) All high-energy change-points 7% are detected

T =T T -1 log (nA2) +q
dH,l(?y T]:) < min k+1 k , k k-1 KL ( 2]6)
2 A7




First Analysis of Penalized Least-square

16/29

High Energy condition : E}(0) 2 , /log(%) +q

Proposition (V. et al. ('20))

For any L and q large enough, under Ay, the penalized least-square estimator 7
satisfies

(a) (NoSp) No Spurious Jump is detected.
(b) (Detec) All high-energy change-points 7% are detected

T =T T -1 log (nAZ) +q
d "F,T* < min k+1 k , k k-1 K k
H1(T, 7)) { 3 5 L Az
Remarks :
m Allow arbitrarily low-energy jumps.

m Local condition for high energy ~ log(n/ry) (see
also [Frick et al., 2014, Chan and Chen, 2017])

m Dependency in g is optimal with respect to the probability 1 —ce~ca

m Complexity-based penalties are highly suboptimal.




Localization (Loc) by Penalized Least-squares

Proposition (V. et al. ('20))

Fix any L and q large enough. For any high-energy change-point 7}, we have

P(dH,l(?,r,j)]lAq > cAi%) e Vaxl.
Remarks :

m Recovers the optimal subexponential rate of order A;2 for a specific
change-point

= Regional to Local phenomenon :
Detection= High-Energy Localization only depends on Ay !
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Localization (Loc) by Penalized Least-squares

Proposition (V. et al. ('20))

Fix any L and q large enough. For any high-energy change-point 7}, we have

P(dH,l(?,r,g)]lAq > cAi%) e Vaxl.
Remarks :

m Recovers the optimal subexponential rate of order A;2 for a specific
change-point

= Regional to Local phenomenon :
Detection= High-Energy Localization only depends on Ay !

m Localization errors of high-energy change-points behave nearly independently.

17/29



Hausdorff and Wasserstein Loss

If |7| = |7%|, define

1}
M=
B

|
2

dw (:Fa k. )

~ K
dg (7, 7*) = Iili:l.lxh'k -7

Corollary

Assuming that all change-points have high-energy, we deduce

AN

E[dw (F,7*)14,]

K
> (et 55)
Ak

k=1
Ke"8% A log K .
A

E[dH (?7T*)1Aq] 2

max
ke{l,....,K} pt

Remark : Hausdorff and Wasserstein rates are minimax optimal.

18/29



Wrap-up :
m Regional to Local phenomenon.
m Low-energy change-points are (almost) unharmful.
m Localization errors behave almost independently.

19/29



Wrap-up :
m Regional to Local phenomenon.
m Low-energy change-points are (almost) unharmful.
m Localization errors behave almost independently.

One versus Multiple change-points.
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Wrap-up :
m Regional to Local phenomenon.
m Low-energy change-points are (almost) unharmful.
m Localization errors behave almost independently.

One versus Multiple change-points.
When K =1, log(n/r) conditions are replaced by loglog(n/r1) conditions.

Possible Extensions/ Open Questions :

m Heavier tail distribution, time dependencies :
~ uniform control of the CUSUM (e.g.[Cho and Kirch, 2019])

m Exact constant for detection ?

m Similar results for two-steps bottom-up approach.

19/29



A Recipe for general Change-point Models
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A general change-point framework

Data : Random sequence Y = (y1,¥2,...,Yn) in some measured space Y.
Notation : P; € P marginal distribution of y;.
Change-point Functional : r:pP-y.

Change-Points : changes in the sequence (I'(P1),I'(P2),...,I'(Pr))
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A general change-point framework

Data : Random sequence Y = (y1,¥2,...,Yn) in some measured space Y.
Notation : P; € P marginal distribution of y;.
Change-point Functional : r:pP-y.

Change-Points : changes in the sequence (I'(P1),I'(P2),...,I'(Pr))

Examples :

= Gaussian mean Univariate change-point :
V=R, P={N(,02),0 R}, T'(P) = [ zP(dz)

= Gaussian mean multivariate
change-point [Chan and Chen, 2017, Wang and Samworth, 2018] :
YV=RP, P={N(0,0%1p),0 e RP}, I'(P) = [ 2P(dx)

= Semi-parametric median (or quantile) univariate
change-point : [Jula Vanegas et al., 2021]
Y =R, P = {Probability measure on R}, I'(P) = median(P)

= Non-parametric univariate change-point : [Padilla et al., 2019]
Y =R, P = {Probability measure on R}, I'(P) =P

m Gaussian Covariance multivariate change-point : [Wang et al., 2017]
Y=RP, P={N(0,%),Z ¢S5}, T(P) = [ 22T P(dx)

Goal : Detecting the change-points 77, ..., 75
(leave aside the problem of localization)

21/29



A generic bottom-up algorithm

We are given :

m A collection (called a grid) G of (,r) (location, scale) corresponding to
segments (I —r,l+7) c[1,n+1]
E.g. Complete Grid G ={(l,r): (I-r,l+7)c[1,n+1]};
Dyadic Grid Gp.

Dyadic grid
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A generic bottom-up algorithm
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We are given :

m A collection (called a grid) G of (,r) (location, scale) corresponding to
segments (I —r,l+7) c[1,n+1]
E.g. Complete Grid Gg ={(l,r): (-7 l+7r)c[l,n+1]};
Dyadic Grid Gp.
m A collection of local homogeneity tests 7 = (17,,.)
(Ho,i,» : no change-point in (I -7,1+7))
equivalent to I'(P;—-) = T(Pi—ps1) = ... = T(Pryp-1)

Data: Local test (7} )
CI=92,;,CP=0; ’
For r € Scales !
For [eLlocationss.t. Ty, =1 n r\—/—
if[l-r+1L,l+r-1]nCT=0 &
then
CT « CTU[l-r+1,l+r-1]; ’
CP < CPu{l};
end
return 7,4 =CP Dyadic grid




A generic bottom-up algorithm
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We are given :

m A collection (called a grid) G of (,r) (location, scale) corresponding to
segments (I —r,l+7) c[1,n+1]
E.g. Complete Grid Gg ={(l,r): (-7 l+7r)c[l,n+1]};
Dyadic Grid Gp.
m A collection of local homogeneity tests 7 = (17,,.)
(Ho,i,» : no change-point in (I -7,1+7))

equivalent to I'(P;—-) = T(Pi—ps1) = ... = T(Pryp-1)
Data: Local test (7} )
CL=3;CP=0,
For r € Scales ! [l

«

For [eLlocationss.t. Ty, =1
if [[-r+1,l+r-1]nCT=9g
then
CZ « CZu[l-r+1,l+r-1];
CP < CPu{l};
end
return 7,4 =CP Dyadic grid

scalei: r
1

O(n) tests for dyadic grids

Differs e.g. from [Chan and Chen, 2017, Kovacs et al., 2020] because intervals of
detected change-points are not allowed to intersect.



From multiple tests properties to detection properties

If FWER(T) <6, then 7,4 satisfies (NoSp) with probability higher than 1-4.

Any change-point T, detected by a local test T} 7, with Ty, < Tk /4, is detected
by Tag and
dHyl("Fag,T;) <rp-1.
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From multiple tests properties to detection properties

Proposition

If FWER(T) <6, then 7,4 satisfies (NoSp) with probability higher than 1-4.

Any change-point T, detected by a local test T} 7, with Ty, < Tk /4, is detected
by Tag and
dHyl("Fag,T,:) <rp-1.

K* = collection of significant change-points
= "with proba higher than 1 -4, all 7-]: € K* detected by a suitable local test"

~ With probability higher than 1 - 26, 7,4 satisfies NoSp and Detects significant
change-points.
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From multiple tests properties to detection properties

Proposition
If FWER(T) <6, then 7,4 satisfies (NoSp) with probability higher than 1-4.
Any change-point T, detected by a local test T} 7, with Ty, < Tk /4, is detected
by Tag and
dHyl("Fag,T,:) <rp-1.

K* = collection of significant change-points
< "with proba higher than 1 -4, all 77 € IC* detected by a suitable local test"

~ With probability higher than 1 - 26, 7,4 satisfies NoSp and Detects significant
change-points.
General recipe :

m Introducing a sensible notion of Energy

m Optimal testing with respect to that energy.

m Proper multiple testing correction to account for all tests in Gp.
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Application 1 : Sparse Multivariate Change-Point Setting

24/29

Gaussian Multivariate Change-point Model

Yi = 01- + €4, where 9,’ € R? and €5 ii'd N(O,O’2Ip).
Objective : Detecting times 7}, ..., 7/ such that 0_,;: * 97_):_1

side information 6_x — @ _x_; is possibly sparse
T T 1

[Wang and Samworth, 2018, Chan and Chen, 2017, Enikeeva and Harchaoui, 2019,
Liu et al., 2019]



Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

”97']: - 07',:—1 H2

2
Ek:Tk D)
o

Local Homogeneity tests on [l — 7,1+ 1)
1st Simplification : two-sample tests over data in [ - r,l) versus [[,[ + 7).

2nd Simplification : (possibly-sparse) signal detection test with multivariate CUSUM

statistics

_ — V2r _ — V2r
Cir = [Yim) - Yorp] — ~ N [(B[z,m) =01rp)) Tvlp]
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Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

”97']: - 07',:—1 H2

2 _
Ek—’l‘k D)

g

Local Homogeneity tests on [l — 7,1+ 1)
1st Simplification : two-sample tests over data in [ - r,l) versus [[,[ + 7).

2nd Simplification : (possibly-sparse) signal detection test with multivariate CUSUM
statistics

— = Vor — — Vor
Cir=[Yim - Yiory] TT ~ N[(B[l,nr) -0[_r1)) i Ip]

)
e

Old toy detection Problem : [Baraud, 2002, Donoho and Jin, 2004, Collier et al., 2015]
~ Higher-Criticism + x? type statistics (minimax optimal wrt sparsity s and p)
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Energy and Optimal Tests for sparse high-dimensional data

Energy of a Change-Point

”97']: - 07',:—1 H2

2 _
Ek—’l‘k D)

g

Local Homogeneity tests on [l — 7,1+ 1)
1st Simplification : two-sample tests over data in [ - r,l) versus [[,[ + 7).

2nd Simplification : (possibly-sparse) signal detection test with multivariate CUSUM
statistics

— = Vor — — Vor
Cir=[Yim - Yiory] TT ~ N[(B[l,nr) -0[_r1)) r71p]

[

Old toy detection Problem : [Baraud, 2002, Donoho and Jin, 2004, Collier et al., 2015]
~ Higher-Criticism + x? type statistics (minimax optimal wrt sparsity s and p)

Not Sufficient : Q(n) tests are considered
~» one also needs optimal dependencies wrt Types | and Il error probabilities :
e.g. variants of HC [Liu et al., 2019]; see also Pilliat et al.('20).
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Optimal Detection

0€(0,1); sy sparsity of change-point 7.

High-energy change-point

7, is a high-energy change-point if Ei 2y p,sy,5 Where

VP n n
o s s=splog| 1+ Xox|log| — || +1log — | .
Yn,p,s,6 = Sk Og( o\ Rt e o8| 5
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Optimal Detection

0€(0,1); sy sparsity of change-point 7.

High-energy change-point

7, is a high-energy change-point if E? > Y p,sy,,5 Where

/P n n
s, s =splog| 1+ XA log| — || +log| — ] .
Yn,p,sp,8 = Sk og( o og —; og -

Theorem (Pilliat et al.(’20))

With probability higher than 1 -6, Ta4 achieves (NoSp) and (Detects) all
high-energy change-points 7 with Ez >l pan, o
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Optimal Detection

0€(0,1); sy sparsity of change-point 7.

High-energy change-point

7, is a high-energy change-point if E? > Y p,sy,,5 Where

/P n n
s s =selog| 1+ Y= |log| — | | +log| — | .
Ynp,sp,,6 = Sk og( o og —; og -

Theorem (Pilliat et al.(’20))

With probability higher than 1 -6, Ta4 achieves (NoSp) and (Detects) all
high-energy change-points 7 with E,% >l pan, o

Conversely, no procedure achieving (NoSp) is able to (Detect) high-energy
change-points T, with E,% 2 C-Vn,p,sp,5

Remark : Generalizes asymptotic result of [Chan and Chen, 2017]. For K <1,
see [Liu et al., 2019].
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Application 2 : Covariance change-point detection

Gaussian covariance Change-point Model [Wang et al., 2017]
yiNN(O7E’£)7 i=1,...,n

Objective : Detecting times 77, ..., 7 such that Z_r]: # 27;71
Side information : max; |2;|op < B2 (for some known B)
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Application 2 : Covariance change-point detection

Gaussian covariance Change-point Model [Wang et al., 2017]
yiNN(O7E’£)7 i=1,...,n

Objective : Detecting times 77, ..., 7 such that Z_r]: # E_r;ul

Side information : max; |2;|op < B2 (for some known B)

Energy E]% =T ”ET; - E-r;:_l ”(27p'

- = log(32)  log(32)
Local test 7}, = 1 {||21,T ~ S llop 2 coB? [\/EJr RV rRLLS 2
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Optimal Detection

d€(0,1).

High-energy change-point

7 is a high-energy change-point if EZ > ¢ p,r, where

2n
e =5 g (22)) o]
TR0

Theorem (Pilliat et al.('20))

With probability higher than 1 -6, To4 achieves (NoSp) and (Detects) all
high-energy change-points 7, with EZ > cytpn p,r,

28/29



Optimal Detection

d€(0,1).

High-energy change-point

7 is a high-energy change-point if EZ > ¢ p,r, where

2n
e =5 g (22)) o]
TR0

Theorem (Pilliat et al.('20))

With probability higher than 1 -6, To4 achieves (NoSp) and (Detects) all
high-energy change-points 7, with EZ > cytpn p,r,

Conversely, no procedure achieving (NoSp) is able to (Detect) high-energy
change-points 7} with EZ > c_tbn p,r,

(Improves over the plog(n) condition of [Wang et al., 2017])
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Discussion

Main message

A simple reduction of change-point detection problems to multiple testing problems
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A simple reduction of change-point detection problems to multiple testing problems

Sloppy optimality statement

If each test T; , is minimax optimal (in some sense), then T4, should (almost)
optimally detect (in some sense).
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Discussion

Main message

A simple reduction of change-point detection problems to multiple testing problems

Sloppy optimality statement

If each test T; , is minimax optimal (in some sense), then T4, should (almost)
optimally detect (in some sense).

Open Questions

Localization rates require model-specific techniques.

For (sparse) high-dimensional change-points, there seem to exist several phase
transitions from regional to local

29/29
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