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1 Hidden Markov Processes

1.1 Model of observations.

We are given a couple of equations

dX; = f (9,t) Yydt + o (t) AWy,
dY; = a (9,t) Ydt + b (9, t) dV4,

where W;,0 <t <T and V;,0 <t < 7T are independent Wiener
processes and the observations are X1 = (X;,0 <t < T). The O-U
process Y1 = (Y;,0 <t < T) is hidden. The functions
f,t),0(t),a(d,t),b(I,t),t €0,T] are supposed to be known

and the parameter ¥ € ©® C R is unknown.




The conditional expectation m (9,t) = Ey (Y| Xs,0 < s <t) and
the error v (9,t) = Ey (Y; — m (9,t))” are solutions of
Kalman-Bucy (K-B) filtration equations

v (9,t) f?
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with initial values mo = Ey (Y| Xo) and 7o = Ey (Yo — m (9,0))*.
Recall that m (1,%) is an optimal estimator of Y;.
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ot
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Pb.: To obtain a good recurrent approrimation my,0 <t < T of
the process m (9,t),0 <t <T.

We need a good estimator of ¥, which depends on X,,0 < s <t to

use it for construction of m;,0 <t < T.




How to chose an estimator? The likelihood ratio function is:

T e F(9,8)m (9,1) F0,6)%m (9,1
(19X p{ () dX; — / dt}.

The MLE @T and BE @T are defined by the relations
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To construct the MLE and BE of the parameter ¥ we have to
calculate the functions {m (¢,t), 0 <t < T}, ¥ € © and
{v(@,t), 0<t<T}, ¥ € O defined by the K-B equations.

But we can not put the MLE 97 or BE 97 in m (9,t) because the
stochastic integral containing 7(1§T, t) does not defined.




Remark that the direct numerical calculations of the MLE and BE

is almost impossible.

To approximate m (,t) we propose the following program:

. Calculate a preliminary estimator ¥, on relatively small

interval of observations [0, T].

. Using U, realize One-step MLE-process V5,7 <t <T

. As approximation of m (19,t) we propose my obtained with the
help of K-B equations, where v is replaced by 7,7 <t <T

. Estimate the error mj; —m (9,t).

We apply this construction to 5 different models of observations.




Let 9, be the consistent preliminary estimator with the “bad” rate
of convergence (7/T — 0) and the Fisher information matrices
I' (¥),7 <t <T are known. Then the One-step MLE-process is

t :/gT —|—It (’57.)_1 /‘t S(@T’S)

roof(s)

[dXS — S (57, s) ds}

Here S (9,t) = f (¥,s) m (9, s). For all models

oL (9 —9y) = N (o,r; (19)_1) |

One-step can be written in the recurrent form. Denote

L(0,t) =8 (9,,5) S (Dr,5) o ()% Then
dor =1- (9,) " L (0,,t) [0, —9F] dt

1 8(9.,0)

I )

[dX, — S (0-,t) dt],




The adaptive filter m;,7 <t < 7T is
* * 1\2
Vi (ﬁt 3 t)
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dm; = |a (97,t) —
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On the error of estimation. We have the minimax lower bound

lim lim  sup 90_2E19 (my — m(ﬁyt))z > 87 (190)2
v=0 o0 ||9—90||<v

The adaptive filter mj,7 <t < T'is called asymptotically efficient if
for all 99 € © and t € (7, T

lim lim  sup ¢ 2Ey (mf —m(9,t)° = SF (9)°
v=09=0 199, <v

The quantity S} (¥9)” can be calculated in all considered models.




1.2 HMP with small noises in both equations.

Consider the linear two-dimensional partially observed system

dX, = f (0, 1) Yidt +e0 (1) AW,  Xo=0, 0<t<T,
dYt:a(ﬁ,t)mdt—Fé“b(t)d‘/t, Y():y()?é(), OStST,

Asymptotic € — 0. The preliminary estimator is (z; (¥) = X¢|._g)

J,, = arg gggfo X — o (9)[*dt, =0

K, (1994) Identification of Dynamical Systems with Small Noise.
Kluwer Academic Publisher, Dordrecht.

K, Zhou, L. (2021) ”On parameter estimation of the hidden
Gaussian process in perturbed SDE”, Electr. J. of Stat.,15,211-23/




Introduce the notation: S, (¢, 7¢,t) = f (9, t) y; (¥, 90),

: 0S5, (9,9,
S* (1971907?5) — (819 & )

= f(9,8) y: (9,90) + f (9,1) 9¢ (9,90)

dt.

To . —l_
Sk (Vo, Vo, t) Sk (Yo, Vo, t
1(190)2/ (Yo, v0,t) Sk (Yo, V0, 1)
0

o (t)”

The d x d matrix I(dg),Y9 € © is the Fisher information. The
MLE and BE are uniformly on compacts K C © consistent,
asymptotically normal

A
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One-step MLE-process 07 ., 7. < ¢ <T are defined by the relations
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Here M (v¥,s) = f (¥, s) m (9, s) and

P . T
I;g_ (190) _ / S* (19071907 S) S* (19071907 S) ds

o (s)

This estimator-process is as. normal

Ui . — Yo

E

— C~ N (0,15 ) ),

This estimator is used for adaptive filtration.




1.3 HMP with low noise observations

Consider the linear two-dimensional partially observed system

dXt = f (ﬁ,t) thdt + 0 (t) th, X(), 0 S t S T,
dY; = a (9,8) Yadt + b (9,1)dV;, Yo,

Asymptotic e — 0. Below 7. = e'/12 ;1 —t; =e'/3 N, =~ 1/4

N.—1 2
U - 2 : Xt7;+1+€ T Xt7;+1 Xti—i—e - th-
Te € T c 9

: E
1=0

/sf(@%,t)%(@%,tfdt:xpw
0

K (2019) ”On parameter estimation of hidden Ornstein -Uhlenbeck
process”, J. Multivariate Analysis. 169, 1, 248-2635.

K (2024) 7 Volatility estimation of hidden Markov process and
adaptive filtration”, Stoch. Processes Appl., July, 173, 104581




Fisher information matrix is

I(9) = /O ) 52 ff(’t’;) [ 8819 lnS(ﬁ,t)] [(%mS(ﬁ,t)]Tdt.

Here S(¥,t) = f (9,t) b (9,¢).

The MLE 9. and BE 9. are consistent, and asymptotically normal,
le.,

A

(195 — 190)
NG

One-step MLE-process 97 _, 7 <t <T

t,eo

(515 — 190)
NG

— C~ N (0,1(90) 7).

— C.

1 [t M(@Ts, )

?9;;8 — /197—6 + If’ (/197—6) 2
7 © 7. €&EO (S)

This estimator is used for adaptive filtration.




1.4 Hidden Telegraph process.

The observations are
dXt:Y;dt—Fth, X():O, OStST

where Y;,0 <t < T is telegraph process and W;,0 <t <7T'is an
independent of Y;,0 <t < T Wiener process. Recall that Y;,t > 0
i1s a memory-less continuous-time stochastic Markov process that
shows two distinct values y; = a and yo = b. Parameter v = (\, ).

This process can be described by the transition probabilities
Pyz’yj (t) =P (Y;f — yj|Y0 — yZ)

o A Ot A (vt
P (1) = a ) Pyq (¢ EN a )
(t) >\+M+)\+Me ba (1) €

A
Py () H P o=t p(4) = L P e

Y

TAtu Atu Xt A




The stochastic process Y;,t > 0 admits the representation
dX; = m (9, t) dt + dW,, Xo, 0<t<T,

where m (9,t) = Ey (Y| ;") is the conditional expectation. Let us
denote 7 (9,t) = Py (Y; = a|$§() Py (Yt = b\S%X) =1—m(V,1).
Then m (9,t) = b+ (a — b) 7 (V, ).

The random process 7 (¥, -) satisfies the following equation

dr (9,t) = [ — (A + p) 7w (9,¢)

o (0,8) (1 — 7 (9,8)) (b—a) (b+ (a—b)w (9,4))] dt
L, (1 — 7 (9,8) (a—b) dX;.

Chigansky, P. (2009). “Mazimum likelihood estimator for hidden
Markov models in continuous time”. SISP. 12, 139-163.

Khasminskii, R. Z. and K (2018) ”On parameter estimation of
hidden telegraph process”. Bernoulli, 24, 3, 2064-2090.




Having a preliminary MME 1975 we propose One-step MLE-process
as follows (7‘5 =T 6 ¢ (l 1))

~

i = =, +t (0, i (Urg, 8) [dXs — m(Js,, s)ds] .

Here the vector

m(d,s) = (a —b) Om (5, 0) = (a —b) (87T (t,9) Om (t,q?))

09 ox 7 Ou

and the empirical Fisher information matrix I; (1) is
1 [
L(#) = / (9, )9, 5) T ds —s 1(0)
)

as t — oo by the law of large numbers. Here [(?) is the Fisher
information matrix

o (s,9) O (s,9)"

I(9) = (a—b)" Ey 59 59




1.5 Hidden AR process

Consider the model of partially observed time series

Xt:f}/%_1+0wt, Xo, t:1,27...,
}/;5 — a’}/t—l +b/Ut7 Y07

where X1 = (X, X1,...,X7) are observations and Y;,t > 0 is a
hidden AR process. Here w;,t > 1 and v, t > 1 are independent
standard Gaussian random variables, i.e., wy ~ N (0, 1),

vy ~ N (0,1). The initial values are Xy ~ N (0,d2) and

Yo ~ N (O, di) The system is defined by the parameters

a® €[0,1),b, f,0?. We suppose that some of these parameters are

unknown and have to be estimated by observations X7 .




Kalman filter for m; (9) = Ey (Y¢| X0, ..., X}) is

afvs (1)
0% + [27x (V)

my (V) = amy_1 (9) + (X — fm 1 (9], t>1

where

2p2 _ 52 (1 — g2 1
PP eet(ea) |

Vs (9) 272 5

We propose MMEs for a, b, f,0? and consider the problems of

estimation one, two and three-dimensional parameters like ¥ = b,
V= (f,a), V= (f, a, 02). Describe the properties of MLE and BE,
study One-step MLE-processes for these parameters and introduce

adaptive Kalman filter.




Three statistics are introduced

Sl,T (X

Sor (X

Sg,T (X




Preliminary MME

2£2b? f26? (a — 1)
Sl,T (XT) — 1—|—CL —|—20'2, SQ,T (XT) — 1—|—CL
m  f*bPa(a—1)
Ssr (X7) = =

The MME v7 = (a*T, Ir, 0%*) is the following solution of this

2557 (X71)

_ SB,T (XT> (1 + CL;)

+1,  Jr

4T = Sl,T (XT) + 2S2’T (XT)

. (f7)" V7
O'% — 551,’]" <XT) — 1,'1_'1_—01;

b2a% (a% — 1)

Y




Fisher informations.

Parameter ¥ = b:

By (99)? [P (90)? + a?aﬂ
I (Yo) =

2P (1) [P ()% — a%ﬂ |
Here P (9) = 02 + f?7, (V)

Parameter ¢ = o2:

a2 [ﬁofag (99) — T (190)} i

I,2 (Vo) =

P (do)* (1 - A (90)*)

Parameter v = a. Parameter 9 = (f, a, 02).




Unknown parameter ¢ = (f,0?)

The unknown parameter 9 = ( f, 02) = (#1,02) and the partially

observed system is

Xt:91)/t—1+\/92wt7 X07 t:1727°°'7
}/t — CLYt_l =+ b'Ut, YO‘

For the Fisher information matrix we have the representation

I(0y) — I (Yo), T2 (Y0) |

Io1 (Yo), 122 (Y0)




Bf (7907 190)2
P (90) (1= A (do)”

L1 (Vo) =

L2 (Vo) =

I (Vo) =

and always




One-step MLE-process. Consider the construction of a one-step
MLE-process in the case of unknown parameter ¥ = b. Fix a
learning interval X't = (XO, X1,... ’XTT)’ where

Ty = [T‘S} ,0 € (%, 1). The preliminary estimator is v

Ip(0 )7' [Xs - fms—1(19iT)}

2 P(;,)

(t o TT) s=T,+1

Tr

; ([XS ~ maa(i2)] - PO

Here t € [TT + 2,T].
For any fixed v € (0,1) and ¢t = vT uniformly on Jy € K

V(95 —90) = N (0,T(90) ") tBgy (957 —90)" — Tp(do) .




Let us write this estimator in recurrent form too:

19* ﬁ;k—T 1 ]‘ *
t,T_t_TT+( _t—TT> t—1,T
Ko = e (97)] frive (97,)

T ) (- ) PO )

([~ fmeatoz)] = Pz, P07,
21,(07,) (= 7r) P05, )
te|rp+1,T).

_|_




The random sequences m,—1 (U7 ) and 11 (97 ) are

me_1 (ﬁj_T

) — P(ﬂj_T)_l |:0J0'2m8_2(19;k.T) + af’)/*(ﬁj-T)Xs—l )

a1 (97,) = P93, )a0® | P(0;

T

g —a(0%

P07 ) mema(9)] +

Adaptive filter.

)"t lactmi_y p+afv(9r_y ) Xe], t € [T +1,T].




Theorem 1. Lett = [vT],v e (0,1], k=t —7,+2 and T — oo.
Then the following relations hold

k
Vit [mi e —my (00)] = B* (90,90) Y AW0)" —m-1,1 Ct—m (Y0) ,

m=0

B* (99, 00)”
Ty (9o) (1 Y (190)2> |

tEg, [mfr —my (90)]" — Sf (90)° =

Notation

a(72f;7* (790)

B>I< 19 ,19 — y
o 00) = T o (00) "




Asymptotic efficiency
The lower bound is (¢t = vT,v € (0,1],T — o0)

lim lim sup tEy(m;—m (19,75))2 > S (190)2

=0t 00 |9—do | <v

The adaptive filter myp, Tp <1 < T is called asymptotically
efficient if for all ¥o € © and t € (7, 7]

lim lim sup tEyp (mZT —m (?9,75))2 = (190)2

r—0t—oo ”19_190 ” SV

The adaptive filter mj ;- is asymptotically efficient.

K (2024) ”Hidden AR process and adaptive Kalman filter”. To
appear in AISM.




1.6 Hidden O-U process, Ergodic case

We are given a linear system with constant coefficients

dXt:f(ﬁ)}/tdt—l-O'th, X(), OStST,
dY; = —a (9) Y dt + b (9) dV;, Ye.

Here f (9) # 0, b(9) # 0, 0% > 0 and a (J) > 0. Asymptotlc
T — . Examples: (F) : f(¥) =4, a(9)= b(¥) =b,
(A) : f(W)=f, a(@) =19, b ) = b, ( : ) forbidden,

(F,A) : f(9) =01, a(¥) =0z, b)) =b,ie 9= (01,0602).

K (2019) “On parameter estimation of hidden ergodic
Ornstein-Uhlenbeck process” Electr. J. of Stat., 13, 4508-4526.

K (2024) “Hidden ergodic Ornstein-Uhlenbeck process and adaptive
filtration” submatted.




We are given a linear system

dX; = fY:dt + o dW4, Xo,
dY; = —aY;dt + bdV;,
For instant we denote ¥ = (f,a,b).

The equations of Kalman-Bucy filtration are

d,t) f*

o2

a/y (19775) L 7(197?5)2 f2 2
Y —2ay (9,t) — — + b7,

with the initial values mg = Ey (Y| X0), 70 = Eg (Yo — m (9, O))Z.

dm@xw:—la+7(

]nuaﬂdw+7wt

o2




Recall that Riccati equation has an explicit solution
—1

1 f2 (1 _ 6—27“(19)15) iy (19)

_ 6—27“(19)75
Ty [v(ﬁ,O) ) w@)

where

r () = (a2+ f2b2)1/2, v (V) =

f? |
and we suppose that v (1,0) # 7. (¢). Note that there exists a
constant C' > 0 such that

o2

v (9, t) — 7« (V)] < Ce 2rt 0, as t —> oo.

This exponential convergence essentially simplifies the calculations.
We suppose that v (19,0) = 7. () and therefore v (¥, t) = 7. (1) for
all t > 0.




1.7 Method of moments estimators.

At the beginning we suppose that ¥ = (f,a,b) € ©. The set O is a
bounded, convex, closed subset of R> and the values of a are
positive and separated from zero. For simplicity of exposition we

suppose that 1" is integer.

Introduce the notation

: ) f2b
Rir = Z Xy — Xg—1]", ®q (V) =
k=1

a3

1 T

Ror = ;_:2 Xk — Xi—1] [Xp—1 — Xj—2], @2 (9) =

Rr=(Ri7,Ror)", O (9) = (D1 (9), Dy (V)"




and &, = (&1,&) " ~ N (0,K (9)), where

( Ki12(9) Ki2(9)

Ko1(¥) Kaa (V)




Proposition 1. The statistic R, has the following properties:

1. Uniformly on © it converges to ® (9), i.e., for any v > 0

Jm sup Py ([[By — 2 (9)]| 2v) =0.

2. Is uniformly on compacts K C © asymptotically normal
\/T (RT — @ (19)) — f*,
3. The moments converge: for any p > 0 uniformly on K

lim TP/ ?Ey ||R, — @ ()" = Ey |&7,

T — 00

and there exists a constant C > 0 such that

sup TP/ ?Ey |R, — @ (19)Hp <C.
Y€K




1.7.1 Estimation of the parameter f.

Suppose that ¥ = f € © = («, ) ,a > 0 and the values of a > 0
and b # 0 are known. Note that in this case

9 — <(‘D1 (0) — o°) a3>1/2.

b% e~ — 1 + a

Hence the MME 19*T can be defined as follows. Let us denote

5 T 1/2
_ a 2 9
= X — Xp—1]” —
19T <b2 [e_a—l—i—a]Tkzl ([ k k1] o ))

and set

Uy = alir, r<ay @)} T Vrle@)<ri r<ei)) T BLR r20.())




The true value is denoted 1y and we set

B CL3 Kl,l (19)
T A2 (e —1+a) (D (0) —02)

Proposition 2. The MME 19; 18 uniformly on compacts K C ©
consistent, asymptotically normal

Dy (9)

VT (95 = 90) = & ~ N (0, D5 (90)°)

and the polynomial moments converge: for any p > 2
p
TP/?Ey, |07, - 190| S Ey, |61




1.7.2 Estimation of the parameter b.

Suppose that 9 =b € O = («a,8),a > 0 and the values of a > 0
and f # 0 are known. In this case

9 = <(‘I’1 (9) — o) “3>1/2,

fler—1+d

. 1/2
ﬁT_(P[ “—1+a EZ:(X’“X“ 02)) |

Proposition 3. The MME 19; of the parameter ¥ = b is uniformly
on compacts K C © consistent, asymptotically normal

VT (95 = 90) = & ~ N (0, Dy (95)*)
and the polynomial moments converge: for any p > 2

p
TP/?Ey, |07 - 190| By, |6




1.7.3 Estimation of the parameter a.

Suppose that ¥ =a € © = (o, 5), @ > 0 and the values of f # 0

and b # 0 are known.

Let us verify that the function

B beQ

Dy (9) =

[e_ﬂ—l—l—b‘]—l-aQ, VESNS)

is strictly decreasing.

Introduce the function h(z) =273 (x —1+e" %),z > 0. Then for
its derivative we have the expression

h () = 2743 — 22 — (3 + x) e~ *]. Remark, that the function
g(r)=3—-2x—(3+x)e®at x=0is g(0) =0 and has derivative
g (x)=-24 2+ zx)e ™ with ¢’ (0) =0. At last

g’ (x)=—(14+x)e ® <0. Hence ¢’ () <0, g(x) <0 and

h' (x) < 0 for z > 0.




As the function @4 (¥),9 € O is strictly decreasing, the equation
Rl,T = (131(19;), ?9; c 0O

has a unique solution. Introduce the function H (y) inverse to the

function h (x), i.e., H (h (x)) = x,z > 0. Then we can write

Ry 1 — o2 Rip — @1 (Y)
9 =H ! = 9 !
T £2p2 ) 0+ W (Vo) F202

+0(T7).

VT (95 = 90) = € ~ N (0, D4 (99)*),

2 K1,1 (190)
Do) = o it




1.7.4 More general model

All considered cases of estimation of one-dimensional parameters
are particular cases of a slightly more general model of observations

dXt = f (19) thdt -+ O'th, XO, t Z O,
dY; = —a (9) Y;dt + b (9) AV, Yo,

where f (9),a(9),b (), € © = (a, ) are known smooth
functions. To estimate the parameter ¥ by observations
X1 = (X;,0<t<T) we can use the MME

1 T

U = arg ggg Ry — ¥ ()], Ry = T
k=1

e~ 14 a ()],




Proposition 4. Let the functions f (9),a(9),b(9),9 € |a, B8] have

two continuous derivatives, and

inf |\IJ(19)) > 0.
(YSS)

Then the MME 91 is uniformly consistent and for any p > 2

sup Tp/2E19O }ﬁT — ﬁo‘p < C.
Yo EK




1.7.5 Two-dimensional parameter ¥ = (a, f)

Suppose that

9 =(01,02) =(a,f) €0 = (aq, Ba)%(as,Bs), ag>0 ar>0.

The MME 97 = (¢9>1’<,T, HS’T)T = (a7, f;)T is defined as solution

V= 19;} of the system of equations

D4 (19) = Rl,T7 b, (19) — RQ,T, Y e O

Recall that
f2 b2

a3

¢ () e™*—1+a| 407,




This system can be solved in two steps as follows: the equation

can be solved the first and then having solution a; of this equation
we define the second estimator

3/2 1/2
)Rz




Let us denote &* = (£3,&4)' the Gaussian vector with the

corresponding covariance matrix Q ().

Proposition 5. The MME 19; 18 uniformly consistent, uniformly

on compacts K C © asymptotically normal
VT (9, = do) = € ~ N (0,Q (%)),

the polynomial moments converge and the estimate

) p
sup TP/ Ey, 19; — 190” < C
Yo €K




1.8 MLE and BE

We are given a two-dimensional diffusion process {X;,Y;, t > 0}

dY, = —a (@)Y, dt +b(9) AV, Yo,
dXt = f(l?)Y;dt—F O'th, X() :O,

This model of observations allows us to study estimators in the five

different situations:




The likelihood ratio function has the following form:
M 19 t M (v
(19 XT) = exp ) dX; — / ) dt .
202

The MLE 1§T and BE 5T are defined by the relations

. . 19p L (19 X7 dv
L X7 = L(9.XT f@ .

Here M (¥,t) = f (J)m (9,t) and p(+) is continuous positive

density function on ©.

To construct the MLE of the parameter ¥ we have to calculate the
function {M (¢,t), 0 <t < T}, ¥ € O defined by the equation

AM (9,) = —r (9) M (9, 1) dt + ~ (9) dX,, M (9,0) .




1.8.1 One-dimensional parameter

Suppose that the parameter 9 is one-dimensional and © = («, ).

Introduce the quantity

a(9)° 24 (0) 7
2a

)~
r (@) = (a(®)

[(9) =

v

which will play the role of Fisher information.

Under regularity conditions given in the theorem below we have the
lower bound on the mean square risks of all estimators (Hajek-Le

Cam’s bound)

lim lim sup TEy|d, — { > T ()"
0=0T 500 [9—190|<6

The estimator 1§T is as. efficient if we have equality here.




Theorem 2. Suppose that the following conditions hold.

1. The functions a (), b(9), f (), ¥ € |a, B] twice continuously
differentiable on ©.

2. For all v > 0 we have

inf w_igof"w(\a(ﬁ) —a(9o)| + |r(®) — r (190)|) > 0.

3. The following condition holds infyceo (\a (D] + |r (19)|) > 0.

Then the MLE @T and BE @T are uniformly consistent, uniformly

on compacts K C © asymptotically normal
VT (1§T _ 190) — (N (0,1(190)—1) VT (&T _ 190) —

polynomial moments converge and the both estimators are

asymptotically efficient.




Proof. Ibragimov-Khasminskii program. Denote
L(ﬁo T PTU, XT)
L(¥g, XT)

and verify the properties

1. InZ7p (u) = ulAr (9g) — “721 (Vo) + 77, Ar(Jo) = A (o),
rr — 0.

Zr (u) = : uEUT:(\/T(a—ﬁo),\/T(B—ﬁO)>

112
2. By, | Z1 (ul) — 7 (U2)2 < C|’LL1 _u2|2

3. By, Zr (1) < Ly
Then
Zr ()= Z (") 7 (u) = e~ 2o in  C(R)

and

\/f(@;p—ﬁ()) — arg sup Z (u) =

ueR




1.8.2 Case F,i.c.,v=f.

Consider the particular case ¢ = f. Then
r(9) = (a2 + b*9252)"?

and the Fisher information is

b1

I(d) =

20ty (9)

Hence by Theorem 2 the MLE and BE are consistent,

asymptotically normal

. 2047 (¥9)°
\/T(QSIT_&()) :N(O, b419(2) >

and asymptotically efficient.




1.8.3 Case A i.e.,tv =a.

1/2

We have r (9) = (92 +b*f?0~2)"" and the Fisher information is

Y (9) |(r (9) +9)° + 7 ()9
20r (9)° [r (9) + 9]

[(9) =

Y

the both estimators are asymptotically normal and asymptotically

efficient. Say,

VT (@T _ 190) — N (o, I (190)_1> |




1.8.4 Case B,i.e.,v = 0.

The Fisher information is

ﬁ2f4

I(9)

2 (9)% o

and the MLE and BE have the corresponding asymptotic

properties.




1.8.5 Case AB, i.e., Y = (Ql, 92, )T ,91,0 = aO,QQ,O = bo.

As before, we suppose that ¥ € © = (ag, B4) X (ap, By), where
ag > 0,ap > 0. The system is

dXt = f}/tdt + O'th, XO — O, t Z 0
dY; = 6,Y:dt + 02d V4, Yo,

and the observations are X1 = (X;,0 <t < T).




To calculate Fisher information matrix I (1) we first note that the

values Iy ; (¥) and I 5 (¥) were already calculated above

Therefore Fisher information matrix is

v(90)? [7“(190)91,0+(T(190)+91,0)2] £202.0 (9%,0-#7“(190)91,0—2?“(190))

I (19 ) — 291,07"(190)3[7"(190)4—91,0] ’ 2T(190)3(7“(190)—|—91’0)0'2
0 £202,0(03 o+7(90)01,0—2r(90)) 0% o f*
27“(190)3(T(190)—|—91,0)0'2 ? 27"(190)30'4

The determinant of the Fisher information matrix with a slightly

simplified but obvious notation can be calculated as follows

b2 f4 (r —a)® 03 o f 4y (Vo)

Det (I (¢ = = .
(1 (o)) dar3 (r+a)2 ot 40107 (90)° (r (%) + 010)% o4

Therefore

ﬁioréf@ Det(I(dp)) >0




Theorem 3. The MLE @T and BE @T are uniformly consistent,

uniformly on compacts K C © asymptotically normal

\/T(&T—ﬁo):g, \/T@T—ﬁo):g,

polynomial moments converge: for any p > 2

) p
lim TP/ 2By, Op —do|| = By, [IC]]7,

T — 00

p
lim TP/ 2By, = Y| =By, [IC]I°,

T — 00

and the both estimators are asymptotically efficient.




1.9 One-Step MLE-process.

Consider once more the partially observed system
dX: = f (9) Yedt + o dW4, Xg =0, 0<t<T,
dY; = —a (9) Yedt + b () dV4, Yo.

The unknown parameter is one-dimensional, ¥ € © = («, ) and we
have to estimate it by observations X1 = (X;,0 <t < T).

K-B filter is

AM (9,1) = —r (9) M (9, 1) dt + ~ (9) dX;,

(a, ()% + b(9)? fw)%—?) o




The MLE and BE described above have nice asymptotic properties
and in particular are asymptotically efficient, but the calculation of
these estimators are computationally rather difficult problems

because just for one value of LR

T T 2
M
L(9,X7) = exp ( [0 g, [T dt) seo
0 o) 0 2(7

we need solutions of Kalman-Bucy equations for all or many ¢ € ©.

The One-step MLE-process will be constructed in two steps. First:
by observations X7 on the relatively small learning interval

1) 1 *
[O,TT} , T = [T ] ,0 € (5, 1) we construct a MME 197T and then
using this estimator as preliminary we propose One-step
MLE-process. Here [A] means the integer part of A.




Introduce the notations

f(9)%b(9)?
a(¥)?

awf__mmﬂum_+¢wf

20 (V)  a(¥)+r(9)  2r(9)

(¢“ —1+a(®)) + 0

and the estimator-process U p, 7p <t <T

t M (9%

tT_ﬁ* +

%) [dXs — M(ﬁiT,s)ds} :

o2



The random processes M (V9% ,t), M (97, 51), 70 < t < T satisty the

T
equations

)M (97 ,t)dt + (05 )dXs,
' )dt — (95 )M (9% t)dt +5(05 )X,

T

The initial values M (97 ,7), M(U7 ,7;.) are defined as follows.

M0, 77) = M (9,007 4 (@)@ [T erax,
0

0




Introduce conditions A

1. The functions f (9),a(9),b(9),9 € |, B] are positive and

twice continuously differentiable.
2. inff}E@ |\If (19) ‘ > 0.
3. inff}E@ (‘CL (19)’ + ’7“ (?9)|) > 0.

Change the variables:
t=v1I,v € [eT,l}

— 7'TT_1 — T-1+9 _s 0 and denote
v (v) = e <v < 1.
T v, T T —

78T




Theorem 4. Let the conditions A hold. Then One-step
MLE-process U7, (v),ep <v <1 with 6 € (1/2,1) is uniformly on
compacts K C © consistent: for any v > 0 and any g9 € (0, 1]

lim — sup Py, [ sup |97 (v) — 190‘ > 1/) = 0,

T'—oo  gyeK (60§U§1

asymptotically normal
VT (19; (v) — 190) — (N (o, o (190)—1) |
and the moments converge: for any p > 2

TP2E, |9* (v) — 9|
Yo T(U) 0

— Ef}o ’C’Ulp .

The random process Ny (v) = v/T1 (Vo) (19; (v) — 190> 0 <v <1

converges in distribution in the measurable space (Cleg,1],B) to
the Wiener process W (v) g9 < v < 1.




Remark 1. The One-step MLE-process can be given in the
recurrent form as follows. For the values t € (7., T] we have the

equality
(t =77) Vip = (t—77) 0T,

! P ME;,0) dX, — M9, s)d
+1(q9jT) /TT o2 [ s —M(07 s) s}.

Hence

A M(9* ¢t
Q) = —E 1Tt + W)

t— T I(ﬁjT)JQ (t — 7

; [dXt ~ M0, t)dt} .

To avoid the singularities like 0/0 at the beginning ¢t = 7., in
numerical simulations the value ¢ — 7., in this formula can be
replaced by ¢t — 7., + €™, where €* > 0 is some small value. This

modification, of course, will not change the asympt. results of 97 .




1.9.1 Estimation of the parameter f.

If f(9)=v€0O = (ar,Bf),ar>0,a(V) =a>0and
b(1¥) = b > 0, then the preliminary estimator is

v =

The One-step MLE-process 19t 7 Tp <t < T 18

X v 20” A 19* M 19* dX — M 19* d
T +b419>|<2 t_TT / ( )S}

According to Theorem this estimator has the properties mentioned
in this theorem and in particular we have the asymptotic normality

25y (190)3>

v b2




1.9.2 Estimation of the parameter b.

o) =9€0 = (ap,0p),0>0, f(¥)=f>0and a(J) =a >0,

then the preliminary estimator and One-step MLE-process are

5 - 1/2
ﬁif(fz[ —ivd Z([Xk—Xk 1]2“2)> |

TT —

20r19* )
r =05 + /M dX ~ M0 )ds},

f4 19*2 t— TT

with the corresponding processes M (9,t),¢t > 0 and M (9,t),t > 0.

We have as well

VT (19; (v) — ﬁo) — N (0, 2“;;§g§)3> .




1.9.3 Estimation of the parameter a.
Ifa(W)=9€0 = (ay,B4), (9)=f>0,a(d) =a>0.

1 9
* = inf |— X — Xi_ —
0, =g o |2 57 X = X W (9)|.

2b2
U (9) = fﬂg

The Fisher information I(¢) was defined above

I(d) = v (Yo) [r (Po) + Fo + 7 (Po) Yoy (Vo)]
: 2007 (99)° [ (9o) + Do)

™’ — 1+ 9] + 0%

Y

and the One-step MLE-process is asymptotically normal

VT (19; (v) — 190) — N (O,v‘ll (190)—1) .




1.9.4 Estimation of the two-dimensional parameter (a, f).

The partially observed system is
dXt :92Ytdt—|—0'th, Xo, 0 StST,
dYt — _Hliftdt + bd‘/ty YO) - Yy

where b # 0 is known and we have to estimate
¥ = (a, f) = (01,02) € © = (g, Ba) X (g, Bf), ag > 0,5 > 0.

Recall that the preliminary MME 97 = (07, ,0; . ) = (a
can be calculated as follows




Fisher information matrix was given above and it is non
degenerate. One-step MLE-process is the vector process
Ui, 7p <t < T defined by the expression

b=, - / M (¥ dX — M(0; )ds} .
N TT

Proposition 6. One-step MLE-process 95 T Tp <t < 1 1s

uniformly consistent, asymptotically normal

and the polynomial moments converge.




1.10 Adaptive filtration

Consider once more the same partially observed linear system

dXt :f(ﬁ) iftdt—l-O'th, X(), OStST,
dY; = —a (9) Yydt + b (9)dV, Yo, £ =0,
where W;,t > 0 and V;,t > 0 are independent Wiener processes.

Here the functions f (9),a (9),b(9),9 € © are known, positive and
smooth. The value of the parameter ¥ € © = (a, 3) is unknown.

The conditional expectation M (9,t) = f (¥) Ey (Y| Xs,0 < s <1t)

satisfies the Kalman-Bucy equations

AM (9,) = — |a (9) + 7 (0,0) f O)° M (9,¢) dt + dX;,

0'2




The Riccati equation is

Oy (0, 1)
ot
The main idea is to use the One-step MLE-process on the time

interval t € (TT, T]

= —2a (9) v (V1) — 7 (0,0 1 (9) +b(9)*,  y(9,0),

o2

= 1 / M(9%,s) |dX, — M (97 )ds] |
- TT

where 97 is a MME constructed by observations

Xr = (X,,0<s<7,), 7, =T°0 € (1/2,1), and to replace ¥ by
U7 1 in the equations of filtration.




There are at least three possibilities of such approximation of the
random process m (9,t),0 <t < T.

Consider the random process my 1,7, <t < T

Ye,rf (UF N
ik (2 t’T) [dXt — f( t,T) mt,Tdt} 7

= —Q ( :,T) mt,Tdt —I_ >

~ 9 2
= —2a ( ;T) /)\/t,T _ W/t’Tf;Q t’T) + b ( ;‘:T)2 ,




Another possibility is to use the explicit expression for the solution
of the equation

6—27’(19)t

* 19 ’
1 1 f(9)?(1—e—2r(M1) )
v¥(9,0) =« () 2T(19)0-2

Y (197t) —

(9) = a(9)]

The approximation of m (9, t) can be realized by the random
process My (t) , 7. <t < T

i (1) = —a (97 ) g, (1)

Y (ﬁ:,Tv t) f (ﬁ:,T>

— 5 [dX, — f (07 1) g (¢)de]

O

with the initial value Mg (TT).




The third opportunity is to use the exponential convergence of the
solution « (¥, t) of the Riccati to the steady-state value ~, (9) and
the approximation of m (¥, t) can be done with the help of the

solution mj ., 7, < ¢ < T of the equation
dm;T = —T < :,T) m;Tdt —l— B ( :,T) Cl)(t7

where we denoted B (9) = [r (9) — a (9)] f (9) .

Introduce the constants

(Do)

K(ﬁo) = —|a (190) -+ (190)

7(190) (19())7

B (19()) 0

\/ 27“ (190) ’
(W) v (Wo) +a (Vo) r (Vo) — 4a (o) v (Vo)
=) = % (00) 1 (90) 1 (o)

nr (v) = VT (95 — o) ,

N (o) =




and random variables

fT (’U) = \/27“ (190) T/i e—T(ﬁo)(U—u)TdWT (u) . we [80, 1] .

T

Here g9 € (0,1), v, =T~ ",k € (0,1) and note that

By, &y (v)° = 1+ 0(1).

If v1 # vy, then

V1 N\V2

Ey, &1 (v1) &7 (v2) = 2r (Do) T/ e~ 2riPo) =T qy = 0

(Ul—I/T)\/<’U2—VT)

for |vg —vi| > v, — 0.




Theorem 5. Suppose that the conditions of Theorem 4 hold. Then
the random process my p —m (¥o,t) after re-parametrization

myr r — m (Yo, vT') ,v € [go, 1] admits the representation

Ny () & (V)

(V)

+ o0 (1)

# SN/ [ [eetoae T 00T iy ()

U

where 1 () = W (-), The r. v.’s & (v) = £ (v) ~ N (0,1),
v € leg, 1], where W (+) and & (v) are independent.

The mean square error s

Ey, (m:T,T —m (o, UT))




Remark 2. Suppose that the unknown parameter is ¥ = b and

write the adaptive filter for the system

dXt :fY;dt—l—O'th, Xo,
dY; = —a Y, dt + 9 dV;, Yo,

in recurrent form. Recall that 7., = T°,6 € (%, 1), the preliminary

estimator and One-step MLE process are

5 r 1/2
19% N <f2 [e—a iL 1+ a Z ([Xk B Xk_1]2 N 02)> |

-
T =1

95—V 20500 NI t)
Aoy, = 2T g4 — v [dXt — M(©* ,t)dt} .
’ t—Tp [z (t—7r) g




The equations for M(z?iT,t), 7 <t < T and M(z?iT,t), T, <t<T

| )dt+'r'(z9T )M (9%, £)dt +4(9 )dX,.

T

o

(9) = ( +fo2) L@ -a,

and the initial values M (97 ,7.), M 7.) are defined as before.
The adaptive K-B filter is

dmyp = —r (Vi p) m;pdt + B (V) dXy, my o, 7, <t <T.

Tr




1.11 Asymptotic efficiency

Theorem 6. We have the following lower minimaz bound for any
estimator my T of m (¥,t) (below t =vT)

lim lim sup 1By [z — m (9,0 > B, (11 (90) 1 (90)°)

V=07 00 [9—00|<v

Here n,, 7 (90) = Vt (950 — Do) = 1 (o)

E,, (m (190)277(190)2) — lim Ey, (m (D0,)? nor (190)2) |

T — o0

We call the estimator m; r (adaptive filter) asymptotically efficient
if for all Jg € O

lim lim sup tEy|mep —m0)]° = Eg, (m (90)° 1 (190)2) :

vr—0T—0c0 |q9—190|§1/




Theorem 7. The asymptotically efficient adaptive filter is
My = m (ﬁf)T,t) , T <t <T', where

m(J,t) =m (19, TT) e~ (t=7r) + X; — e_Tw)(t_TT)XT

T

t
—r(ﬂ)/ e T=%) X (s,

T




