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Motivation

Down-and-Out (D-O) and the Up-and-Out (U-O) barrier options

πBD
= E

[
f (XT )1{inft∈[0,T ] Xt>BD}

]
and πBU

= E
[
f (XT )1{supt∈[0,T ] Xt<BU}

]
for

dXt = b(Xt)dt + σ(Xt)dWt , X0 = x ,

where (Wt)t≥0 is a s.B.M. b : R→ R and σ : R→ R∗+ are loc.
Lipschitz-functions such that 1

σ is loc. integrable.

For φ(y) =
∫ y

y0

1
σ(x)dx , if σ ∈ C1 then by the Lamperti transform

Yt = φ(Xt) solves

dYt = L(Xt)dt + dWt , Y0 = φ(x),

with L(x) =
(

b
σ −

σ′

2

)
(φ−1(x)).

As the function φ is monotonic, we get πBD
= πD and πBU

= πU where

πD = E
[
g(YT )1{inft∈[0,T ] Yt>D}

]
, πU = E

[
g(YT )1{supt∈[0,T ] Yt<U}

]
,

g(x) = f ◦ φ−1(x), D = φ(BD) and U = φ(BU).
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General Framework

In the sequel, we consider the general setting given in [Alfonsi 2013]
and let (Yt)t≥0 denote the SDE defined on I = (0,+∞) solution to

dYt = L(Yt)dt + γdWt , t ≥ 0, Y0 = y ∈ I , with γ ∈ R∗, (1)

where L : I −→ R is C 2, s.t.

∃ κ > 0, ∀y , y ′ ∈ I , y ≤ y ′, L(y ′)− L(y) ≤ κ(y ′ − y).

In addition, for an arbitrary point d ∈ I , we assume that

v(x) =

∫ x

d

∫ y

d

exp
(
− 2

γ2

∫ y

z

L(ξ)dξ
)
dzdy satisfies lim

x→0+
v(x) = +∞.

(H1)
By the Feller’s test, the above assumptions ensure the existence of a

unique strong solution (Yt)t≥0 on (0,+∞).

5 / 57



The drift implicit Euler scheme

For ti = iT
n , 0 ≤ i ≤ n, we consider the drift implicit continuous

scheme introduced in [Alfonsi 2013] ,

Ŷ n
t = Ŷ n

ti + L(Ŷ n
t )(t − ti ) + γ(Wt −Wti ), t ∈ [ti , ti+1] (2)

Ŷ n
0 = y

is well defined and for all t ∈ [0,T ], Ŷ n
t ∈ I = (0,+∞).

If in addition we assume that for p ≥ 1, we have

E
[( ∫ T

0

|L′(Yu)L(Yu) +
γ2

2
L′′(Yu)|du

)p]
<∞ and E

[( ∫ T

0

(L′(Yu))2du
) p

2
]
<∞,

(H2)

then by [Alfonsi 2013], there exists a positive constant Kp such that

E
1
p

[
sup

t∈[0,T ]

|Ŷ n
t − Yt |p

]
≤ Kp

T

n
.
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The interpolated drift implicit scheme for Brownian bridge

For our purpose, we rather focus on a slightly different interpolated
version. For ti = iT

n , 0 ≤ i ≤ n, Y
n

ti+1
= Y

n

ti + L(Y
n

ti+1
)T
n + γ(Wti+1 −Wti ),

Y
n

0 = y .
(3)

and then introduce the following interpolated drift implicit scheme

Y
n

t = Y
n

ti + L(Y
n

ti+1
)(t − ti ) + γ(Wt −Wti ), for t ∈ [ti , ti+1[. (4)

The main advantages of this Brownian interpolation is that it preserves
the rate of strong convergence of the original drift implicit scheme (2)
and allows an easy use of of the Brownian bridge technique for pricing
Barrier options.
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Strong convergence rate

For this aim, we strengthen our assumption on L as follows:

L : I → R is C2 such that: L is decreasing on (0,A) for A > 0,

and L′ satisfies ∃L′A > 0 s.t. ∀y ∈ (A,∞), |L′(y)| ≤ L′A. (H3)

Theorem 1

Assume that conditions (H2) and (H3) hold true for a given p > 1, then

E
1
p

[
sup

t∈[0,T ]

|Y n

t − Yt |p
]
≤ Kp

T

n
.

Corollary 2

Under assumptions of Theorem 1, if in addition

∃α > 0 such that ∀ y ∈ I , yL(y) ≤ α(1 + |y |2) (H4)

then E[ sup
0≤t≤T

|Y n

t |p] <∞.
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Brownian bridge and drift implicit scheme

The above barrier option prices can be approximated by

πD := E
[
g(Y

n
T )

n−1∏
i=0

1{inft∈[ti ,ti+1] Y
n
t>D}

]
and πU := E

[
g(Y

n
T )

n−1∏
i=0

1{supt∈[ti ,ti+1] Y
n
t<U}

]
.

To get more accurate approximations, we use the Brownian bridge
technique. For x ∈ R, (x)+ stands for max(x , 0).

Proposition 1

Under the above notation, for h = T
n , we have

πD = E
[
g(Y

n
T )

n−1∏
i=0

(1− qi )
]
, qi := exp

(−2(Y
n
ti
−D)+(Y

n
ti+1
−D)+

γ2h

)
and

πU = E
[
g(Y

n
T )

n−1∏
i=0

(1− pi )
]
, pi = exp

(−2(U − Y
n
ti

)+(U − Y
n
ti+1

)+

γ2h

)
.

The Brownian bridge technic goes back to [Baldi 1995] and [Gobet 2009]
for related refinements.
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The interpolated drift implicit Euler MLMC method

We consider the drift implicit scheme (Y
2`

ti )0≤i≤2` given in (3) using a
time step h` = 2−`T for ` ∈ {0, ..., L}, with L = log n/log 2, where n is
the finest time step number.

Let (Y
2`

t )0≤t≤T denote the Brownian interpolation of the drift implicit
scheme defined in (4) with time step h`. For

P` := g(Y
2`

T )
2`−1∏
i=0

1
{sup

t∈[t`
i
,t`
i+1

]
Y

2`

t <U}
, where t`i =

iT

2`
for ` ∈ {0, ..., L},

(5)

we have

πU = E
[
PL

]
= E

[
P0

]
+

L∑
`=1

E
[
P` − P`−1

]
, (6)

where πU := E
[
g(Y

n

T )
n−1∏
i=0

1{supt∈[ti ,ti+1] Y
n
t<U}

]
.
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Brownian bridge for the MLMC method

Applying Proposition 2 yields

E
[
P`
]

= E
[
P

f

`

]
, where P

f

` : = g(Y
2`

T )
2`−1∏
i=0

(1− p2`

i ) with

p2`

i = exp
(−2(U − Y

2`

t`i
)+(U − Y

2`

t`i+1
)+

γ2h`

)
.

Following the conditional MC proposed by [Giles et al. 2019]

E
[
P`−1

]
= E

[
g(Y

2`−1

T )

2`−1−1∏
i=0

E
[
1
{sup

t∈[t
`−1
i

,t
`−1
i+1

]
Y

2`−1

t <U}
|Y 2`−1

t`−1
i

,Y
2`−1

t`2i+1
,Y

2`−1

t`−1
i+1

]]
=

E
[
g(Y

2`−1

T )

2`−1−1∏
i=0

E
[
1
{sup

t∈[t
`−1
i

,t`
2i+1

]
Y

2`−1

t <U}
1
{sup

t∈[t`
2i+1

,t
`−1
i+1

]
Y

2`−1

t <U}
|Y 2`−1

t`−1
i

,Y
2`−1

t`2i+1
,Y

2`−1

t`−1
i+1

]]
,

where the coarse scheme Y
2`−1

t`2i+1
is computed using our Brownian

interpolation scheme (4) that is

Y
2`−1

t`2i+1
= Y

2`−1

t`−1
i

+ L(Y
2`−1

t`−1
i+1

)(t`2i+1 − t`−1
i ) + γ(Wt`2i+1

−Wt`−1
i

).
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Brownian bridge for the MLMC method (continued)

Thus, we rewrite supt∈[t`−1
i ,t`2i+1] Y

2`−1

t and supt∈[t`2i+1,t
`−1
i+1 ] Y

2`−1

t as

follows

sup
t∈[t`−1

i ,t`2i+1]

Y
2`−1

t = Y
2`−1

t`−1
i

+γ sup
t∈[t`−1

i ,t`2i+1]

(
Wt −Wt`−1

i
+

1

γ
L(Y

2`−1

t`−1
i+1

)(t − t`−1
i )

)
with

Wt`2i+1
−Wt`−1

i
+ 1

γ L(Y
2`−1

t`i+1
)(t`2i+1 − t`−1

i ) = 1
γ

(
Y

2`−1

t`2i+1
− Y

2`−1

t`−1
i

)

and

sup
t∈[t`2i+1,t

`−1
i+1 ]

Y
2`−1

t = Y
2`−1

t`2i+1
+γ sup

t∈[t`−1
i ,t`2i+1]

(
Wt −Wt`2i+1

+
1

γ
L(Y

2`−1

t`−1
i+1

)(t − t`2i+1)

)
with

Wt`−1
i+1
−Wt`2i+1

+ 1
γ L(Y

2`−1

t`−1
i+1

)(t`−1
i+1 − t`2i+1) = 1

γ

(
Y

2`−1

t`−1
i+1
− Y

2`−1

t`2i+1

)
.
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Brownian bridge for the MLMC method (continued)

Then, using the Girsanov theorem, we get

E
[
P`−1

]
= E

[
P

c

`−1

]
, where P

c

`−1 : = g(Y
2`−1

T )
2`−1−1∏
i=0

(1− p2`−1

i,1 )(1− p2`−1

i,2 )

with

p2`−1

i,1 = exp
(−2(U − Y

2`−1

t`−1
i

)+(U − Y
2`−1

t`2i+1
)+

γ2h`

)
,

p2`−1

i,2 = exp
(−2(U − Y

2`−1

t`2i+1
)+(U − Y

2`−1

t`−1
i+1

)+

γ2h`

)
,

which can be rewritten as

P
c
`−1 := g(Y

2`−1

T )
2`−1∏
i=0

(1−p2`−1

i ) with p2`−1

i = exp
(−2(U − Y

2`−1

t`i
)+(U − Y

2`−1

t`i+1
)+

γ2h`

)
,

(7)

where the coarse scheme Y
2`−1

t`i
evaluated over the finest time grid is

computed using the Brownian interpolation scheme (4).
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Brownian bridge for the MLMC method (continued)

Thus, the improved MLMC method approximates πU by

P̄U :=
1

N0

N0∑
k=1

P
f

0,k +
L∑
`=1

1

N`

N∑̀
k=1

(
P

f

`,k − P
c

`−1,k

)
, (8)

where the condition E
[
P

f

`−1

]
= E

[
P

c

`−1

]
is satisfied.

Similarly, the improved MLMC method approximates π̄D by

Q̄D :=
1

N0

N0∑
k=1

Q
f

0,k +
L∑
`=1

1

N`

N∑̀
k=1

(
Q

f

`,k − Q
c

`−1,k

)
, (9)

where

Q
f
` := g(Y

2`

T )
2`−1∏
i=0

(1− q2`

i ) with q2`

i = exp
(−2(Y

2`

t`i
−D)+(Y

2`

t`i+1
−D)+

γ2h`

)

Q
c
`−1 := g(Y

2`−1

T )
2`−1∏
i=0

(1− q2`−1

i ) with q2`−1

i = exp
(−2(Y

2`−1

t`i
−D)+(Y

2`−1

t`i+1
−D)+

γ2h`

)
.
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Complexity Theorem [Giles, 2008]

Let P denote a payoff functional and P̂l denote the corresponding
approximation using a numerical discretisation with time step h` = T

M` .

Ŷ =
L∑
`=0

Ŷ` =
1

N0

N0∑
i=1

P̂
(i)
0 +

L∑
`=1

1

N`

N∑̀
i=1

(
P̂

(i)
` − P̂

(i)
`−1

)
Assume that

1 E[P̂` − P] ≤ c1h
α
`

2 E[Ŷ`] =

{
E[P̂0],

E[P̂` − P̂`−1]

3 Var[Ŷ`] ≤ c2N
−1
` hβ`

4 Cl , the computational complexity of Ŷ`, is bounded by

C` ≤ c3N`h
−1
` ,
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Complexity Theorem

Then, for any ε > 0 small enough there are values L et N` for which

MSE ≡ E
[
(Ŷ − E[P])2

]
< ε2,

with a computational complexity CMLMC with bound

CMLMC =


O(ε−2), β > 1
O(ε−2(log ε)2), β = 1
O(ε−2−(1−β)/α), 0 < β < 1.

Let us recall that for the same MSE of order ε2 the optimal complexity
of the classical Monte Carlo is

CMC = O(ε−3)
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Extreme path events

For p ≥ 1, assumption (H2) is valid and sup
t∈[0,T ]

E
[
|L(Yt)|p

]
<∞. (H̃2)

Lemma 3

Assume that conditions (H̃2), (H3) and (H4) are satisfied for a given p > 1
and 0 < L′A <

1
2h`

, with h` = 2−`T sufficiently small. Let η ∈ (0, 1), then

P

(
max

(
sup

0≤i≤2`
(|Yt`i

|, |Y 2`

t`i
|, |Y 2`−1

t`i
|)
)
> h−η`

)
= o(hq

` )

P

(
max

(
sup

0≤i≤2`

(
|Yt`i
− Y

2`

t`i
|, |Yt`i

− Y
2`−1

t`i
|, |Y 2`

t`i
− Y

2`−1

t`i
|
))

> h1−η
`

)
= o(hq

` )

sup
0≤i≤2`

P

(∫ t`i+1

t`i

|L(Ys)|ds > h1−η
`

)
= o(hq

` ) for all 0 < q < pη, and

sup
0≤i≤2`

P

 sup
t∈[t`i ,t

`
i+1]

|Wt −Wt`i
| > h

1
2
−η

`

 = o(hq
` ), for all q > 0.
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The drift implicit Euler MLMC analysis

Theorem 4

Let g denote a payoff function satisfying : ∃C > 0 s.t. ∀x , y > 0,

|g(x)− g(y)| ≤ C |x − y |(1 + |x |ν + |y |ν) and |g(x)| ≤ C (1 + |x |ν+1),

with ν > 0.

Moreover, assume that conditions (H̃2), (H3) and (H4) are satisfied for

p >
(1 + δ)(1 + γ)[7(1 + ε) + 2ν]

1
2 − δ

with ε, γ > 0, δ ∈ (0, 1/2).

If in addition inft∈[0,T ] Yt (resp. supt∈[0,T ] Yt) has a bounded density in
the neighborhood of the barrier D (resp. U), then

Var(Q
f

` −Q
c

`) = O(h1+δ
` ) (resp.Var(P

f

` − P
c

`) = O(h1+δ
` )).
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Time complexity analysis

Combining the complexity theorem in [Giles 2008] with the above
result, we deduce that for any δ ∈ (0, 1

2 ) the MLMC estimators Q̄D and

P̄U reach the optimal time complexity O(ε−2), for a given precision
ε > 0, and behave like an unbiased Monte Carlo estimator.

Taking δ close to 1
2 achieves a smaller variance of the difference

between the finer and coarse approximations which is of order O(hβ` )
with β close to 3

2 similar to the case of diffusion with Lipschitz
coefficients studied in [Giles et al. 2019], but clearly leads to very
restrictive conditions on the finiteness of the moments of (Yt)t∈[0,T ] and

(Ȳ n
t )t∈[0,T ].
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Sketch of the proof

First event A1We consider any of the extreme path events. For γ > 0

E[(Q
f

` − Q
c

`)21A1 ] ≤ 2
2+γ
1+γ

(
E

γ
1+γ [|Q f

` |
2(1+γ)
γ ] + E

γ
1+γ [|Qc

` |
2(1+γ)
γ ]
)(

P[A1]
) 1

1+γ

.

By Lemma 3, we get that

E[(Q
f

` − Q
c

`)21A1 ] = o(h
q

1+γ

` ) for all q such that 0 < q
η ≤ p.

Second event A2 corresponds to the non-extreme paths satisfying

| inf
t∈[0,T ]

Yt −D| > h`
1
2−η(1+ε) for η ∈ (0, 1/2(1 + ε)) with ε > 0.

Ù We prove that for h` sufficiently small
∏2`−1

i=0 (1− q2`

i ) and∏2`−1
i=0 (1− q2`−1

i ) are both equal to 1 + o(h`
a) for all a > 0.

Consequently, we deduce that

E[(Q
f

` − Q
c

`)21A2 ] = O(h`
2(1−η)−2ην).
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Sketch of the proof
Third event A3 corresponds to the rest of the non extreme paths.

Ù We prove ∣∣∣∣∣∣
2`−1∏
i=0

(1− q2`

i )−
2`−1∏
i=0

(1− q2`−1

i )

∣∣∣∣∣∣ = O(h`
1
2
−2η(1+ε)).

Therefore, as we work on the non-extreme paths events, we deduce that

E[(Q
f

` − Q
c

`)21A3 ] = O(h`
1−6η(1+ε)−2ην × P(| inf

t∈[0,T ]
Yt −D| ≤ h`

1
2−η(1+ε)))

= O(h`
3
2−7η(1+ε)−2ην)

as the random variable inft∈[0,T ] Yt has a bounded density on the
neighborhood of D. To complete the proof, we choose

η =
1
2 − δ

7(1 + ε) + 2ν
,

which yields E[(Q
f

` − Q
c

`)21A3 ] = O(h1+δ
` ).

Putting all this together gives the result as soon as

p >
(1 + δ)(1 + γ)[7(1 + ε) + 2ν]

1
2 − δ

.
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Application to the CIR model

we consider the problem of pricing D-O and U-O barrier options

πD = E
[
f (XT )1{inft∈[0,T ] Xt>D}

]
and πU = E

[
f (XT )1{supt∈[0,T ] Xt<U}

]
,

where f is a Lipschitz payoff function with Lipschitz and

dXt = (a− κXt)dt + σ
√

XtdWt , X0 = x > 0 (10)

with a ≥ σ2/2, κ ∈ R, σ > 0.

Applying Lamperti transformation Yt =
√
Xt satisfies

dYt = L(Yt)dt + γdWt , Y0 =
√
x ,

where L(y) =
a− σ2/4

2y
− κ

2
y and γ =

σ

2
.

Thus, for g : x ∈ R 7→ g(x) = f (x2) we get

πD = E
[
g(YT )1{inft∈[0,T ] Yt>

√
D}

]
and πU = E

[
g(YT )1{supt∈[0,T ] Yt<

√
U}

]
.
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As a− σ2/4 > 0, we easily check assumptions (H1), (H3) and (H4).

To check (H̃2) it is enough to show that

sup
t∈[0,T ]

E
[
|L′(Yt)L(Yt)|p + |L′′(Yt)|p + |L′(Yt)|(2∨p) + |L(Yt)|p

]
<∞

which is clearly satisfied as soon as

sup
t∈[0,T ]

E
[
Y
−(4∨3p)
t

]
= sup

t∈[0,T ]

E
[
X
−(2∨ 3

2 p)
t

]
<∞.

Recalling that supt∈[0,T ] E
[
X q
t

]
<∞ for all q > − 2a

σ2 we easily conclude

that this holds when σ2 < a and p < 4
3

a
σ2 .

Consequently, for δ ∈ (0, 1/2), if

4

3

a

σ2
> p >

(1 + δ)(1 + γ)[7(1 + ε) + 2ν]
1
2 − δ

> 18

Then Theorem 4 is valid provided that inft∈[0,T ] Yt (resp.
supt∈[0,T ] Yt) has a bounded density in the neighborhood of the barrier.
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Running maximum of the CIR process

Let us introduce firstly the confluent hypergeometric function

1F1(x , b, y) defined for all y , x ∈ C and b ∈ C \ {0,−1,−2, · · · } by

1F1(x , b, y) =
∞∑
n=0

(x)n
(b)nn!

yn,

where (x)n = x(x + 1)...(x + n − 1) stands for the Pochhammer symbol.

Theorem 5

Let (Xt)0≤t≤T denote the CIR process solution to (10). Then
supt∈[0,T ] Xt has a continuous density on any compact set
K ⊂ (X0,+∞), given by

z ∈ K 7→ PCIR,Max(z) =
1

2π

∫ +∞

−∞
e(1+iu)T φ̂(u, z)du

with

φ̂(u, z) =
1F1((1 + iu)/κ, 2a/σ2, 2κX0/σ

2)1F1((1 + iu)/κ+ 1, 2a/σ2 + 1, 2κz/σ2)

a1F1((1 + iu)/κ, 2a/σ2, 2κz/σ2)2
.
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Running minimum of the CIR process

To do so, we introduce the Tricomi confluent hypergeometric function
U(a, b, z) defined for all a, z ∈ C and b ∈ C \ {±0,±1,±2, ...} by

U(a, b, z) =
Γ(1− b)

Γ(1 + a− b)
1F1(a, b, z) +

Γ(b − 1)

Γ(a)
z1−b

1F1(1 + a− b, 2− b, z).

Let τX0↓z := inf{t ≥ 0 : Xt = z} for 0 < z < X0.

E[e−sτX0↓z ] =
U(s/κ, 2a/σ2, 2κX0/σ

2)

U(s/κ, 2a/σ2, 2κz/σ2)
, for s > 0.

Theorem 6

The running minimum inft∈[0,T ] Xt has a continuous density on any
compact set K ⊂ (0,X0), given by

z ∈ K 7→ PCIR,Min(z) =
1

2π

∫ +∞

−∞
e(1+iu)T ψ̂(u, z)du

with

ψ̂(u, z) =
2U((1 + iu)/κ, 2a/σ2, 2κX0/σ

2)U((1 + iu)/κ+ 1, 2a/σ2 + 1, 2κz/σ2)

σ2U((1 + iu)/κ, 2a/σ2, 2κz/σ2)2
.
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Numerical Tests

We consider the problem of pricing D-O and U-O barrier options

πD = E
[
f (XT )1{inft∈[0,T ] Xt>D}

]
and πU = E

[
f (XT )1{supt∈[0,T ] Xt<U}

]
,

where the payoff function f (x) = e−rT (x − K )+.

By the Lamperti transform we get

πD = E
[
g(YT )1{inft∈[0,T ] Yt>

√
D}

]
and πU = E

[
g(YT )1{supt∈[0,T ] Yt<

√
U}

]
,

where g(x) = e−rT (x2 − K )+ and (Yt)t∈[0,T ].

We consider our interpolated drift implicit scheme

Y
n

t = Y
n

ti +

(
a− γ2

2Y
n

ti+1

− κ

2
Y

n

ti+1

)
(t − ti ) + γ(Wt −Wti ), for t ∈ [ti , ti+1],

Y0 =
√
X0 and γ =

σ

2
.

For n large enough, the positive solution is

Y
n

ti+1
=

√
(2+κT

n
)(a−γ2)T

n
+(γ(Wti+1

−Wti
)+Y

n
ti

)2+γ(Wti+1
−Wti

)+Y
n
ti

2+κT
n

.
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Numerical tests

We take r = 0.1, X0 = 100, a = 0, κ = −0.1, σ = 2.5 and T = 0.5.
For the D-O option the strike is K = 95, and the barrier D = 90 and for
the U-O option the strike is K = 105 and the barrier U = 120.

The benchmark prices given in [Davydov and Linetsky 2001] for the
D-O (resp. U-O) option is 10.6013 (resp. 0.7734).

The performance of the improved MLMC is given in the tables and
figure below.

Accuracy Price MLMC cost MC cost Saving

10−3 10.669 2.588× 108 6.752× 1010 260.91
5× 10−3 10.668 1.051× 107 3.376× 108 32.13

10−2 10.668 2.510× 106 4.220× 107 16.81
2× 10−2 10.677 6.187× 105 5.275× 106 8.52

Table: MLMC complexity tests for D-O barrier option pricing of πD
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Numerical tests

Accuracy Price MLMC cost MC cost Saving

10−3 0.77200 4.674×106 4.221×108 90.32
5× 10−3 0.76926 1.571×105 2.11×106 13.44

10−2 0.77015 3.809× 104 2.638× 105 6.93
2× 10−2 0.78168 1.463× 104 6.596× 104 4.51

Table: MLMC complexity tests for U-O barrier option pricing πU

(a) Approximation of πD (b) Approximation of πU

Figure: Comparison for the performances of MLMC vs classical MC algorithm
under the CIR model.
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Application to the CEV model

For CEV process solution to

dXt = µXtdt + σXα
t dWt , t ≥ 0, ,X0 > 0, µ ∈ R and α > 1

we consider the problem of pricing an U-O barrier option

ΠU-O,X
D = E

[
f (XT )1{supt∈[0,T ] Xt<D}

]
,ΠD-O,X
U := E

[
f (XT )1{inft∈[0,T ] Xt>U}

]
.

For α > 1, by Feller’s test the solution (Xt)t∈[0,T ] is positive.

So applying the Lamperti transformation, Yt = X 1−α
t is well defined on

I = (0,+∞) and satisfies

dYt = L(Yt)dt + γdWt , where L(y) = (1− α)
(
µy − ασ

2

2 y−1
)

and thus

ΠU-O,X
D = E

[
g(YT )1{inft∈[0,T ] Yt>D1−α}

]
ΠD-O,X
U = E

[
g(YT )1{supt∈[0,T ] Yt<U1−α}

]
with g : x ∈ R 7→ f (x

1
1−α ).
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Application to the CEV model

we easily check assumptions (H1), (H3) and (H4)

On the one hand, by Itô’s formula the process (Zt)0≤t≤T given by

Zt = X
−2(α−1)
t

4(α−1)2 is a CIR process solution to

dZt = (a− κZt)dt − σ
√
ZtdWt , with a = σ2(2α−1)

4(α−1) and κ = 2µ(α− 1).

We deduce that supt∈[0,T ] E[Y q
t ] <∞ for q > − 2α−1

2(α−1) .

On the other hand to check assumption (H̃2) it is enough to show that

sup
t∈[0,T ]

E
[
|L′(Yt)L(Yt)|p + |L′′(Yt)|p + |L′(Yt)|(2∨p) + |L(Yt)|p

]
<∞

which is satisfied if supt∈[0,T ] E
[
Y
−(4∨3p)
t

]
<∞.

This condition is satisfied when 4 < 2α−1
2(α−1) (i.e. α ∈ (1, 7

6 )) and

p < 2α−1
6(α−1) .
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Application to the CEV model

Besides, we have

|g(x)−g(y)| ≤ [f ]Lip

α− 1
|x−y |(|x |−

α
α−1 +|y |−

α
α−1 ), for all x , y ∈ I = (0,+∞).

Theorem 7

Let g denotes a bounded payoff function satisfying :
∃C > 0 s.t. ∀x , y > 0,

|g(x)− g(y)| ≤ C |x − y |(1 + |x |−ν + |x |−ν), for ν > 0.

Moreover, assume that conditions (H̃2), (H3) and (H4) are satisfied for

p >
(1 + δ)(1 + γ)5(1 + ε)

1
2 − δ

, with ε, γ > 0 and δ ∈ (0, 1/2).

If in addition inft∈[0,T ] Yt has a bounded density in the neighborhood of
the barrier, then

Var(Q
f

` −Q
c

`) = O(h1+δ
` ).
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Finally, for δ ∈ (0, 1/2), if we choose α such that 1 < α < 59
58 <

7
6 then

we can find p such that 2α−1
6(α−1) > p > (1+δ)(1+γ)5(1+ε)

1
2−δ

> 10.

Thus Theorem 7 is valid provided that inft∈[0,T ] Yt has a bounded density
in the neighborhood of the barrier D1−α.

Remark.

One can also consider the CEV process for α ∈ ( 1
2 , 1) solution to

dXt = (a− κXt)dt + σYαt dWt , with X0 > 0, a > 0.

It can be easily checked that for a > 0 this SDE is well defined on
I = (0,+∞). However, the condition that inft∈[0,T ] Xt or supt∈[0,T ] Xt

admits a continuous density in the neighborhood of the barrier seems to
be a challenging problem.
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Running maximum of the CEV process

Let us denote by τX0↑z := inf{t ≥ 0 : Xt = z} the first time that the
CEV process (Xt)t≥0 starting at X0 hits the level z > X0.

From [Jeanblanc, Yor and Chesney 2009], the Laplace transform of the
hitting time τX0↑z is given by

E[e−sτX0↑z ] =
(

X0

z

)β+ 1
2

exp
(
ε
2c(X−2β

0 − z−2β)
)Wk,n(cX−2β

0 )

Wk,n(cz−2β)
,

with ε = sign(µβ), n = 1
4β , k = ε

(
1
2 + 1

4β

)
− s

2|µβ| and Wk,n the

Whittaker’s function

Wk,n(y) = yn+ 1
2 e−y/2U(n − k +

1

2
, 2n + 1, y),

where U denotes the confluent hypergeometric function of second kind

and β = α− 1 and c =
|µ|
βσ2

.
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Running maximum of the CEV process

Theorem 8

Let (Xt)0≤t≤T denotes the CEV process. Then supt∈[0,T ] Xt has a

continuous density on any compact set K ⊂ (X0,+∞), given by

z ∈ K 7→ PCEV, Max(z) =
1

2π

∫ +∞

−∞
e(1+iu)T Φ̂(z, u)du,

with

Φ̂(z, u) = −
c

µ
z−2β−1

U( 1+iu
2µβ

, 1 + 1
2β
, cX−2β

0 )U( 1+iu
2µβ

+ 1, 2 + 1
2β
, cz−2β)

U( 1+iu
2µβ

, 1 + 1
2β
, cz−2β)2

, for µ > 0

and

Φ̂(z, u) = −cz−2β−1

(
2β + 1

1 + iu
−

1

µ

)

×
U(1 + 1

2β
− 1+iu

2µβ
, 1 + 1

2β
, cX−2β

0 )U(2 + 1
2β
− 1+iu

2µβ
, 2 + 1

2β
, cz−2β)

U(1 + 1
2β
− 1+iu

2µβ
, 1 + 1

2β
, cz−2β)2

,

for µ < 0.
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Running minimum of the CEV process

Let us denote by τX0↓z := inf{t ≥ 0 : Xt = z} the first time that the
CEV process (Xt)t≥0 starting at X0 hits the level 0 < z < X0.

By [Jeanblanc, Yor and Chesney 2009] the Laplace transform ofτX0↓z is
given by

E[e−sτX0↓z ] =
(

X0

z

)β+ 1
2

exp
(
ε
2c(X−2β

0 − z−2β)
)Mk,n(cX−2β

0 )

Mk,n(cz−2β)

with ε = sign(µβ), n = 1
4β , k = ε

(
1
2 + 1

4β

)
− s

2β|µ| and the Whittaker

function

Mk,n(y) = yn+ 1
2 e−

y
2 1F1(n − k +

1

2
, 2n + 1, y),

where 1F1 denotes the confluent hypergeometric function of the first

kind with β = α− 1 and c =
|µ|
βσ2

.
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Running minimum of the CEV process

Theorem 9

Let (Xt)0≤t≤T denotes the CEV process solution to (29). Then
inft∈[0,T ] Xt has a continuous density on any compact set K ⊂ (0,X0),
given by

z ∈ K 7→ PCEV, Min(z) =
1

2π

∫ +∞

−∞
e(1+iu)T Ψ̂(z , u)du,

with

Ψ̂(z, u) =
cz−2β−1

µ(1 + 1
2β

)

1F1( 1+iu
2µβ

, 1 + 1
2β
, cX−2β

0 )1F1( 1+iu
2µβ

+ 1, 2 + 1
2β
, cz−2β)

1F1( 1+iu
2µβ

, 1 + 1
2β
, cz−2β)2

, for µ > 0

and

Ψ̂(z, u) = cz−2β−1

(
2β

1 + iu
−

1

µ(1 + 1
2β

)

)

×
1F1(1 + 1

2β
− 1+iu

2µβ
, 1 + 1

2β
, cX−2β

0 )1F1(2 + 1
2β
− 1+iu

2µβ
, 2 + 1

2β
, cz−2β)

1F1(1 + 1
2β
− 1+iu

2µβ
, 1 + 1

2β
, cz−2β)2

, for µ < 0.
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Numerical testes

we used our interpolated drift implicit scheme

Y
n
t = Y

n
ti

+ (1− α)

(
µY

n
ti+1
− α

σ2

2Y
n
ti+1

)
(t − ti ) + γ(Wt −Wti ), for t ∈ [ti , ti+1[, 0 ≤ i ≤ n − 1,

Y0 = X0
1−α, and γ = σ(1− α).

For n large enough, the positive solution to the above implicit scheme

is explicit and given by

Y
n

ti+1
=√

2σ2α(α−1)(1+µ(α−1)T
n

)T
n

+(γ(Wti+1
−Wti

)+Y
n
ti

)2+γ(Wti+1
−Wti

)+Y
n
ti

2+2µ(α−1)T
n

.

We choose α = 1.2, X0 = 100, µ = 0.1, σ = 0.2, T = 1. The payoff

function g(x) = e−rT (x
1

1−α − K )+ is a discounted call function with
r = 0.1. For the U-O option the strike is K = 90, and the barrier
D = 150. For the D-O option the strike is K = 100 and the barrier
U = 90.
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Numerical tests

The tables and the figures below confirm the high performance of the
improved MLMC.

Accuracy Price MLMC cost MC cost Saving

10−4 3.0390 8.226× 109 7.34× 1013 8922.33
5× 10−4 3.0391 3.17× 108 3.67× 1011 1155.67

10−3 3.041 7.436× 107 4.587× 1010 616.91
10−2 3.0452 6.539× 105 5.734× 107 87.69

Table: MLMC complexity tests for the U-O barrier option pricing of ΠU-O,X
D

Accuracy Price MLMC cost MC cost Saving

5× 10−4 11.102 6.483×109 1.642×1013 2532.83
10−3 11.103 1.608× 109 2.053× 1012 1276.66

5× 10−3 11.106 6.379×107 2.053×1010 321.77
10−2 11.094 1.587× 107 2.566× 109 161.69

Table: MLMC complexity tests for the D-O barrier option pricing of ΠD-O,X
U
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Numerical tests

(a) Approximation of ΠU-O,X
D (b) Approximation of ΠD-O,X

U

Figure: Comparison for the performances of MLMC vs classical MC algorithm
under the CEV model

39 / 57



Outline

1 The one-dimensional setting with locally Lipschitz diffusion coefficient

2 The two-dimensional setting : Heston model
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Log-Heston process

For a stochastic volatility model of log-Heston (Xt)t∈[0,T ] solution of
the following SDE:

dXt = (µ− 1

2
Vt)dt +

√
Vt d

(
ρW v

t +
√

1− ρ2W s
t

)
, (11)

dVt = κ(θ − Vt)dt + σ
√
VtdW

v
t .

with κ, θ, σ, X0, V0 > 0, µ ∈ R, ρ ∈ [−1, 1], T > 0, and (W s
t )t∈[0,T ],

(W v
t )t∈[0,T ] are two independent Brownian motions.

Conditioned on Vu, the variance process Vt at time t, t ≥ u

Vt
d
=
σ2(1− exp (−κ(t − u)))

4κ
χ2
d

( 4κ exp (−κ(t − u))

σ2(1− exp (−κ(t − u))
Vu

)
,

where χ2
d(λ) denotes a non central chi-squared random variable with

d := 4θκ
σ2 degrees of freedom and non-centrality parameter λ.
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Log-Heston process

For 0 ≤ u ≤ t ≤ T we can rewrite (11) as follows

Xt = Xu + µ(t − u)− 1

2

∫ t

u

Vsds +
ρ

σ

(
Vt − Vu − κθ(t − u) + κ

∫ t

u

Vsds
)

+
√

1− ρ2

∫ t

u

√
VsdW

s
s ,

since ∫ t

u

√
VsdW

v
s =

1

σ

(
Vt − Vu − κθ(t − u) + κ

∫ t

u

Vsds
)
.

In what follows, we assume that the Feller condition 2κθ > σ2 holds
true to guarantee the positivity of the CIR process.
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Semi-exact log-Heston scheme

For ti = iT
n , 0 ≤ i ≤ n, we consider the Semi-exact log-Heston discrete

scheme

X
n

ti+1
= X

n

ti + (µ− 1

2
Vti )(ti+1 − ti )

+
ρ

σ

(
Vti+1 − Vti − κθ(ti+1 − ti ) + κVti (ti+1 − ti )

)
+
√

1− ρ2
√
Vti (W

s
ti+1
−W s

ti ),

We introduce the following interpolated Semi-exact log-Heston scheme

X
n

t = X
n

ti + (µ− 1

2
Vti )(t − ti )

+
ρ

σ

( n

T
(Vti+1 − Vti )(t − ti )− κθ(t − ti ) + κVti (t − ti )

)
+
√

1− ρ2
√
Vti (W

s
t −W s

ti ).

The main advantages of this Brownian interpolation is that it
enables straightforward use of the Brownian bridge technique for
pricing Barrier options.
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Strong convergence rate

Theorem 10

Let T > 0. For all p > 1, there exists a constant Cp such that

max
1≤i≤n

(
E|Xti − X

n

ti |
p
) 1

p ≤ Cp

(T
n

)1/2
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Brownian bridge and Semi-exact log-Heston scheme

The above barrier option prices can be approximated by

πD := E
[
f (X

n
T )

n−1∏
i=0

1{inft∈[ti ,ti+1] X
n
t>D}

]
and πU := E

[
f (X

n
T )

n−1∏
i=0

1{supt∈[ti ,ti+1] X
n
t<U}

]
.

To get more accurate approximations, we use the Brownian bridge
technique. For x ∈ R, (x)+ stands for max(x , 0).

Proposition 2

Under the above notations, for h = T
n , we have

πU = E
[
f (X

n
T )

n−1∏
i=0

(1− pi )
]
, where pi = exp

(−2(U − X
n
ti

)+(U − X
n
ti+1

)+

(1− ρ2)Vti h

)
,

and

πD = E
[
f (X

n
T )

n−1∏
i=0

(1− qi )
]
, where qi := exp

(−2(X
n
ti
− D)+(X

n
ti+1
− D)+

(1− ρ2)Vti h

)
.
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Brownian bridge for the MLMC method

Thus, the improved MLMC method approximates πU by

P̄U :=
1

N0

N0∑
k=1

P
f

0,k +
L∑
`=1

1

N`

N∑̀
k=1

(
P

f

`,k − P
c

`−1,k

)
,

P
f
` : = f (X

2`

T )
2`−1∏
i=0

(1− p2`

i ) with p2`

i = exp
(−2(U − X

2`

ti )+(U − X
2`

ti+1
)+

(1− ρ2)Vt`i
h`

)
,

P
c
`−1 := f (X

2`−1

T )
2`−1∏
i=0

(1− p2`−1

i ) with p2`−1

i = exp
(−2(U − X

2`−1

t`i
)+(U − X

2`−1

t`i+1
)+

(1− ρ2)V
t`−1
i

h`

)
,

where the condition E
[
P

f

`−1

]
= E

[
P

c

`−1

]
is satisfied.

46 / 57



Brownian bridge for the MLMC method (continued)

Similarly, the improved MLMC method approximates π̄D by

Q̄D :=
1

N0

N0∑
k=1

Q
f

0,k +
L∑
`=1

1

N`

N∑̀
k=1

(
Q

f

`,k − Q
c

`−1,k

)
, (12)

Q
f
` := f (X

2`

T )
2`−1∏
i=0

(1− q2`

i ) with q2`

i = exp
(−2(X

2`

t`i
− D)+(X

2`

t`i+1
− D)+

(1− ρ2)Vt`i
h`

)
,

Q
c
`−1 := f (X

2`−1

T )
2`−1∏
i=0

(1− q2`−1

i ) with q2`−1

i = exp
(−2(X

2`−1

t`i
− D)+(X

2`−1

t`i+1
− D)+

(1− ρ2)V
t`−1
i

h`

)
.
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Extreme path events

Lemma 11

For any η > 0 and h` = 2−`T , the following extreme path events satisfy

max
0≤i≤2`

P
(

max

(
|X 2`

t`i
|, |X 2`−1

t`i
|
)
> h−η`

)
= o(hq

` )

max
0≤i≤2`

P
(

max
((
|Xt`i
− X

2`

t`i
|, |Xt`i

− X
2`−1

t`i
|, |X 2`

t`i
− X

2`−1

t`i
|
))

> h
1/2−η
`

)
= o(hq

` )

P

(
sup

t∈[0,T ]

|Wt −Wt`i
| > h

1
2
−η

`

)
= o(hq

` )

for all q > 0.
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Extreme path events

Lemma 12

Let 2κθ > σ2, for any η > 0 and h` = 2−`T , the following extreme path
events satisfy

max
0≤i≤2`

P

(
max

(
(| 1

Vt`−1
i

|, | 1

Vt`i

|) > h−η`

)
= o(hq` ), for all 0 < q <

2κθ

σ2
η

max
0≤i≤2`

P
((
| 1

Vt`i

− 1

Vt`−1
i

|
)
> h

1/2−η
`

)
= o(hq` ), for all 0 < q <

κθ

σ2
η

max
0≤i≤2`

P

(∫ t`i+1

t`i

Vsds > h1−η
`

)
= o(hq` ), for all q > 0

max
0≤i≤2`

P

(
sup

t∈[t`i ,t
`
i+1]

|
∫ t

t`i

√
VsdW

s
s | > h

1
2−η
`

)
= o(hq` ), for all q > 0.
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MLMC variance and complexity analysis

Let us assume that there exists a positive constant a > 1
2 such that

κθ/σ2 > a so that the Feller’s condition is satisfied.

We need the following assumptions. Let f denote a payoff function
satisfying: ∃C1 > 0 s.t. ∀t ≥ 0, x , y ∈ R,

|f (x)− f (y)| ≤ C1|x − y |.

This implies ∃C2 > 0 s.t. ∀x ∈ R,

|f (x)| ≤ C2(1 + |x |).

Provided that inft∈[0,T ] Xt has a bounded density in the neighborhood
of the barrier D, we get

Var
(
Q

f

` − Q
c

`

)
= O(h

1
2−δ
` ) for δ ∈ (

3

2(a + 3)
,

1

2
), with a >

1

2
.
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Antithetic MLMC method for Heston model

We define the Heston model solution to

dSt = µStdt +
√
VtStdW̃

s
t (13)

dVt = κ(θ − Vt)dt + σ
√
VtdW

v
t

where W̃ s and W v are two correlated B.m. with correlation ρ.

For ti = iT
n , 0 ≤ i ≤ n, we consider the following approximate scheme

[Giles; Szpruch, 2013]:

Ŝn
ti+1

= Ŝn
ti

(
1 + µh +

√
V̂ti (W̃

s
ti+1
− W̃ s

ti ) +
1

2
V̂ti

(
(W̃ s

ti+1
− W̃ s

ti )
2 − h

)
+

1

4
σ
(
(W̃ s

ti+1
− W̃ s

ti )(W v
ti+1
−W v

ti )− ρh
))
,

V̂ti+1 = V̂ti + κ(θ − Vti+1 )h + σ

√
V̂ti (W

v
ti+1
−W v

ti ) +
1

2
σ4
(
(W v

ti+1
−W v

ti )2 − h
)
.

Where Ŝn
ti is the truncated Milstein scheme with step h = T

n .
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Antithetic MLMC method

Thus, the improved MLMC method approximates π̄D by

Q̂D :=
1

N0

N0∑
k=1

Q̂ f
0,k +

L∑
`=1

1

N`

N∑̀
k=1

(1

2
(Q

f

`,k + Q̂a
`,k)− Q̂c

`−1,k

)
,

where (Q̂ f
`,k)1≤k≤N` and (Q̂c

`−1,k)1≤k≤N` are respectively independent

copies of Q̂ f
` and Q̂c

`−1 given by

Q̂ f
` := f (Ŝ2`

T )
2`−1∏
i=0

(1− q̂2`

i ) with q̂2`

i = exp
(−2(Ŝ2`

t`i
− D)+(Ŝ2`

t`i+1
− D)+

(1− ρ2)V̂t`i
h`

)

Q̂c
`−1 := f (Ŝ2`−1

T )
2`−1∏
i=0

(1− q̂2`−1

i ) with q̂2`−1

i = exp
(−2(Ŝ2`−1

t`i
− D)+(Ŝ2`−1

t`i+1
− D)+

(1− ρ2)V̂t`−1
i

h`

)
.
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Numerical Tests

we consider a D-O Call option with strike K = 100 and barrier B = 75.
We suppose that the stock price is following a Heston model (13) with
parameters S0 = 100, V0 = 0.1, σ = 0.1, θ = 0.1, κ = 2, ρ = −0.5 and
µ = −0.02.

The performance of the improved MLMC and Antithetic MLMC is
given in the table and figure below.

Estimation α β MLMC Complexity
MLMC Semi Exact 1.173726 0.962958 ε2.03

Antithetic MLMC 0.724667 0.662456 ε2.47

Table: Time complexity of MLMC Semi xact Vs antithetic MLMC methods
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Numerical Tests
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Figure: Performance of the Antithetic MLMC algorithm under the Heston
model for pricing Down & Out Barrir options
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Numerical Tests
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Figure: Performance of the MLMC Semi Exact algorithm under the Heston
model for pricing Down & Out Barrir options
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