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Outline of The Talk

© The one-dimensional setting with locally Lipschitz diffusion coefficient

© The two-dimensional setting : Heston model
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© The one-dimensional setting with locally Lipschitz diffusion coefficient
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@ Down-and-Out (D-O) and the Up-and-Out (U-O) barrier options

TBp = ]E|:f(XT)1{inftE[0,T] Xt>BD}] and By = E[f(XT)]‘{SUP:e[OTT] XI<BU}}
for

dXt = b(Xt)dt + O'(Xt)th, XO = X,
where (W;)¢>pisas.BIM. b: R — R and o0 : R — R¥ are loc.
Lipschitz-functions such that % is loc. integrable.

o For o(y) = [ 5

Y: = ¢(X;) solves

dx, if o € C! then by the Lamperti transform

dY, = L(X.)dt + dW,, Yo = ¢(x),

’

with L(x) = (g - %) (671(x)).

@ As the function ¢ is monotonic, we get g, = mp and 7, = My where
Tp = E[g( YT)liinficpon Yt>D}}, Y = E[g(YT)l{suptE[o’T] ve<u} |
g(x) =fo¢ ' (x), D= ¢(Bp) and U = $(By).
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General Framework

@ In the sequel, we consider the general setting given in [Alfonsi 2013]
and let (Y:)r>o denote the SDE defined on / = (0, +00) solution to

dY, = L(Y:)dt +vdW,, t>0, Yo=y e[, withyeR*, (1)

where L: | — R is C?, s.t.

k>0, Vy,y' el,y <y, Liy')—Lly) <kly —y). J

@ In addition, for an arbitrary point d € /, we assume that

X y 2 y
v(x) = / / exp ( - 72/ L(f)d£> dzdy satisfies lim v(x) = 4oo0.
d Jd vz x—0+
(H1)
@ By the Feller’s test, the above assumptions ensure the existence of a

unique strong solution (Y;)r>o on (0, +00).
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The drift implicit Euler scheme

o For t; = %, 0 < i < n, we consider the drift implicit continuous
scheme introduced in [Alfonsi 2013] ,

YO =Y+ LYt~ t) + (W, — W), t € [tr, tig] (2)
S;On :_y

is well defined and for all t € [0, T], ¥/ € I = (0, +0).

o If in addition we assume that for p > 1, we have

([ oot + Seema] <o s sl( [ woora) <o
(H2)

then by [Alfonsi 2013], there exists a positive constant K, such that

< Ko J
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The interpolated drift implicit scheme for Brownian bridge

@ For our purpose, we rather focus on a slightly different interpolated
version. For t; = %, 0<i<n,

Y = 7:, + L(Vn )% + ")/(th.ﬂ - Wt,')v

tit1

Yo~y

tiy1

and then introduce the following interpolated drift implicit scheme
Y=Y+ LY, )t —t) +v(We = W), fort €[t tia]  (4)

@ The main advantages of this Brownian interpolation is that it preserves

the rate of strong convergence of the original drift implicit scheme (2)

and allows an easy use of of the Brownian bridge technique for pricing
Barrier options.
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Strong convergence rate

For this aim, we strengthen our assumption on L as follows:

L: 1 — Ris C? such that: L is decreasing on (0, A) for A > 0,
and L' satisfies 3L, > 0 s.t. Vy € (A ,00), [L'(y)] < LL. (H3)

Theorem 1

Assume that conditions (H2) and (H3) hold true for a given p > 1, then

E%[ sup Y, — Yi|P

} T
te[0,T]

< Ky
n

Corollary 2

Under assumptions of Theorem 1, if in addition
Ja > 0 such that Yy €1, yl(y) < o1+ |y]?) (H4)

then E[ sup [Y}]P] < co.
0<t<T
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Brownian bridge and drift implicit scheme

@ The above barrier option prices can be approximated by
- n—1 - n—1
Tp = E[g(YT) H l{i”fre[:,-,z,-ﬂ]?:>p}] and 7y = ]E[g(YT) H 1{5“pte[t,-,t
i=0 i=0

i+l 7?<u}] '

@ To get more accurate approximations, we use the Brownian bridge
technique. For x € R, (x)4 stands for max(x, 0).

Proposition 1

Under the above notation, for h = % we have

= E[g(vnr) ﬁ(l - ﬁi)] \G; = exp <72(7:" _ D)+(V’Zi+1 - D)+)
i=0

72h
and
on T —2U - Yy )+U—-Yy,, )+
7 =E[e(V7) [T -5)]. P = exp ( e )-
i=0

The Brownian bridge technic goes back to [Baldi 1995] and [Gobet 2009]
for related refinements.
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The interpolated drift implicit Euler MLMC method

£

o We consider the drift implicit scheme (Y, )o<j<2¢ given in (3) using a
time step hy = 27T for £ € {0, ..., L}, with L = log n/log 2, where n is
the finest time step number.

Y
o Let (Y} )o<t<T denote the Brownian interpolation of the drift implicit
scheme defined in (4) with time step hy. For

21 .
= . ot ¢ i
Pr=elr) ill l{supte[tf,rf+117fl<u}’ where £ = 2t for £€40, ... L},

(5)
we have
— L — JR—
Ty =E[P] =E[Po] + ) E[P;— Pri], (6)
(=1

n—1

— ~7n
where Ty == E{g(YT) H l{SUPze[r,-,t,-H]VkU}]
i=0
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Brownian bridge for the MLMC method

@ Applying Proposition 2 yields

261
E[P;] = E[P}], where P} : = g(Y5) ] (1 — 5%') with
i=0

ot ot
—2(U - th )+(U — th+1)+>

V2he '
e Following the conditional MC proposed by [Giles et al. 2019]

£
7 — oo

2f=1_1

E[P;_1] =E[g YT )H

b1 -1 01
2t |Y2£ 1 Yfz Yfz 1]] =

su Y +1
{ Pte[tz 1, {z+11] t i
261
-1 gl—1 _pl—1 __50—1
Elg(YT ) | | E[1 20— Yt |Y£ 1 Ytl Y- 1],
i {sup, _re—1,0 |Vt <u} {sup__ , L= e tit1
i=0 rE[:I. ,z2l.+1] te[tzlJr1 i ]

20 . .
where the coarse scheme Yt2e_ s computed using our Brownian
i+

interpolation scheme (4) that is

__pt-1
Y

-1 2, Z 1
L th*1 + L(th;ll)(t2i+1 ) + (W, - Wtffl)'

2/+
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Brownian bridge for the MLMC method (continued)

. —2f1 -1
@ Thus, we rewrite SUPycpef 1 ¢t ] Y, and SUPcper | tf1] Y, as
follows
_ st—1 He—1 1 et /1
sup Y, = Y c-14y  sup <Wt = W + LY )(t — ;7 )>
— — i i+
elt ) eelt " l 7
with
0—1 -1 -1
17 (V2 ¢ 1 _ 1 (V2 2
W~ Wi+ 307 s =7 = (Vi -7
and
-1 __pt-1 1 ottt P
sup Y, = Yt2£1+1 +v  sup We — Wtf(ﬂ + *L(th[ll)(t - t2i+1)>
telth "] teltf e ] i
with
p=1 gl 1 N v
Wtiz:ll - Wt22i+1 L(Y i 1)( i+1 t2i+1) 7 Y ' T Yt2£:+1 ' J
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Brownian bridge for the MLMC method (continued)

Then, using the Girsanov theorem, we get

— — — _pt—1 o1 i1
]E[Péfl} = E[P;q]v where 'szl g(Yr ) (1 —P,21 )1 - P,22 )
i=0
with
__pt-1 -1
pze v exp (—2(1/{ - th’l) U - Yt2 +1)+)
i1 ’Yzhz )
721’«— 21’ 1
s U~ Vo )t~ Vi),
pl,2 = exp ( 2h€ )a
which can be rewritten as
21 _ _ U -V )t — 72[
Py m (V3 ) [Tt ) with 5" = exp (e 2;( )y,
i=0
(7)

Z 1
where the coarse scheme Ytz evaluated over the finest time grid is

computed using the Brownian interpolation scheme (4).
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Brownian bridge for the MLMC method (continued)

@ Thus, the improved MLMC method approximates 7, by
PR NI P
= —i — —c
PU::ﬁzpo,k+ZﬁZ(PZ,k_P£71,k)a (8)
0 k=1 =1 "3
where the condition EFZA] = EF;A] is satisfied.

@ Similarly, the improved MLMC method approximates 7p by

1 I R A
= — — —c
Qp == E Qo+ E v E (Qe,k - Qe-u), 9)
No N,
k=1 =1 "¢ k=1
where
CE (Ve - D)V, ~ D)
—f —_— 772 . 72 — i i+1
Qe :=g(YT) I_|:0| (1-7; ) with g exp( ~2he )
n 2 . o (VA D) (Ve D)

AC N —2t= s =20t i i1
Qe1:=g(Y7 ) | | (1-9; )withg, = exp( ~2he )

i=0
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Complexity Theorem [Giles, 2008]

Let P denote a payoff functional and P, denote the corresponding

approximation using a numerical discretisation with time step hy = %
L 1 M Lo . .
SN AN WA WS NGRS
=0 No = =1t
Assume that
Q E[P, — P| < i hy
% IE[Po]
9 E[Y, —{
vl E[P; — Py_4]

Q Var[V)] < oN, heﬁ
Q@ (;, the computational complexity of Y,, is bounded by
Co < csNeh ',
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Complexity Theorem

@ Then, for any € > 0 small enough there are values L et N, for which
MSE =E[(V - E[P])?] <2,

with a computational complexity Cyi,mc with bound

0(e72), B8>1
Curmc =3 O(e?(loge)?), =1
O(e72-(1=B)/a), 0<B<1.

o Let us recall that for the same MSE of order €2 the optimal complexity
of the classical Monte Carlo is

Cyvic = 0(673)
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Extreme path events

For p > 1, assumption (H2) is valid and sup E[|L(Yt)|p} < oo. (H2)
te[0,T]

Lemma 3

Assume that conditions (H2), (H3) and (H4) are satisfied for a given p > 1
and 0 < L, < ﬁ with hy = 27T sufficiently small. Let 7 € (0,1), then

Y4 __Ht—1
P(max( sup (|l [Verl, IV 1)) >h/’) = o(hY)

0<i<2?

ot __~l—1 L __nt—1
P (maX( sup (|Yee = Veel,|Vee = Ve [[Vee = Vi I)) > hf”) = o(h7)

0<i<2f

th
sup P </ ’ [L(Ys)|ds > hé") = o(h]) forall 0 < q < pn,and
t

0<i<2¢ 7

1
sup P sup |W; — Wt’_e\ >h2 " | = o(hf), forallq>O0.

0<i<2t tetf th ]
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The drift implicit Euler MLMC analysis

Let g denote a payoff function satisfying : 3C > 0 s.t. Vx,y >0,

lg(x) — 8(y)] < Clx —y[(1+ |x]" + |yl) and |g(x)| < C(1+ |x|"*1),
with v > 0.

Moreover, assume that conditions (H2), (H3) and (H4) are satisfied for

(1+0)X+)[7(1 +¢)+ 2]
I

p> with e,y >0, § € (0,1/2).

If in addition inficjo 1) Y; (resp. sup,cpo 7 Yt) has a bounded density in
the neighborhood of the barrier D (resp. U), then

Var(@g —-Q) = O(hf‘;) (reSp.Var(Fi; — B O(héﬂi))'
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Time complexity analysis

e Combining the complexity theorem in [Giles 2008] with the above
result, we deduce that for any § € (0, 1) the MLMC estimators Qp and
Py reach the optimal time complexity O(¢~2), for a given precision

€ > 0, and behave like an unbiased Monte Carlo estimator.

@ Taking 0 close to % achieves a smaller variance of the difference

between the finer and coarse approximations which is of order O(hf)
with 3 close to % similar to the case of diffusion with Lipschitz
coefficients studied in [Giles et al. 2019], but clearly leads to very

restrictive conditions on the finiteness of the moments of (Y;):¢[o, 7] and
(Ytn)tE[O,T]-
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Sketch of the proof

o First event A;We consider any of the extreme path events. For v > 0

E[(Q; - @)*La] < 277 (EF7 [0y "5 ) (prag) ™.

By Lemma 3, we get that

E[(Q Qg) 1a] = o(h””) for all g such that 0 < L<p. J

@ Second event A, corresponds to the non-extreme paths satisfying

| inf_ Ve~ D| > hy? 71059 for € (0,1/2(1 + €)) with & > 0.
tefo,
=> We prove that for hy sufficiently small H?ial(l - 6,22) and
H2 01— q, ) are both equal to 1 + o(h,?) for all a > 0.
Consequently, we deduce that

f

E[(Q, — Q;)?1a,] = O(h21 "2, |

20 /57




Sketch of the proof

@ Third event A3 corresponds to the rest of the non extreme paths.
=> We prove

201 2t 1

[Ta-a)-[[a-a& )=
i=0

i=0

= O(h f—2n(1+€))

Therefore, as we work on the non-extreme paths events, we deduce that
E[(Q) — Q) La] = O(he 9720 s B(| inf ¥, D)<t 7))
telo,
_ O( **777 (1+e)— 2771/)
as the random variable inf;c[p 77 Y; has a bounded density on the
neighborhood of D. To complete the proof, we choose
n= L

7(1+e)+2v’

which yields E[(Q; — Q;)21a,] = O(hLH).

@ Putting all this together gives the result as soon as
L A+ +)[7(1+e) +2v]
i .

= —9

B C
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Application to the CIR model

@ we consider the problem of pricing D-O and U-O barrier options
™D = E[f(XT)]‘{i"fre[o,T] Xt>’D}:| and ™Y = E |:f(XT)1{supt€[0,7—] Xt<7/{}:|a
where f is a Lipschitz payoff function with Lipschitz and

dXt = (a — K/Xt)dt + g/ Xtth, XO =x>0 (10)
with 2 > 0%/2, k€R, o > 0.

@ Applying Lamperti transformation Y; = /X; satisfies

dY, = L(Yy)dt + vdWs, Yo = V/x,

2
—0?/4
3= /A K andy = O

here L(y) = i
where L(y) % 5 5

@ Thus, for g: x € R+ g(x) = f(x?) we get

™ = El&(YT)Lfint,cpo.ry vis vy | 20 T = El8(YT) iy o vicviny |-
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e As a—02/4 > 0, we easily check assumptions (H1), (H3) and (H4).

@ To check (H2) it is enough to show that

sup BIJL(YOLOYIP + L/ (Y)P + LD +L(YP] < oo
tel0, T

which is clearly satisfied as soon as
— 3
sup ]E[Yt_(‘wz'p)} = sup E[X; QVZP)] < 00.
t€[0,T] tel0,T]
Recalling that sup,c(o 1) E[X{'] < oo for all g > —23 we easily conclude
that this holds when 02 < aand p < 5.

e Consequently, for § € (0,1/2), if

ta . @390+ +e)+2] g

302 %—5 J

@ Then Theorem 4 is valid provided that inf.cjo 77 Y; (resp.
Sup,c(o, 7] Y¢) has a bounded density in the neighborhood of the barrier.
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Running maximum of the CIR process

@ Let us introduce firstly the confluent hypergeometric function
1F1(x, b, y) defined for all y, x € Cand b€ C\ {0,—-1,-2,---} by

lFl(Xa bay) = Z (E:;):_,lynv
n=0 nt

where (x), = x(x + 1)...(x + n — 1) stands for the Pochhammer symbol.

Theorem 5

Let (X;)o<t<T denote the CIR process solution to (10). Then
Sup.epo, 7] Xt has a continuous density on any compact set
K C (Xp, +00), given by

1 TES ST 2
zeK— PCIR,Max(Z) — 27/ e(1+lu)T¢(u’ Z)du
™ — 00
with
(2)(” z) = 1F1((1 + iv)/k,2a/02,2kX0/02)1 F1((1 + iu)/k + 1,2a/02 + 1,2kz/0?)

a1F1((1 + iu)/k,2a/02,2kz/0?)?
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Running minimum of the CIR process

@ To do so, we introduce the Tricomi confluent hypergeometric function

U(a, b, z) defined for all a, z€ C and b e C\ {£0,£1,+2,...} by
(1 -0b) Frb—1) 1.4
U(a, b,z) = Ti+a_b) b)1F1(a, b, z) + r@) z

@ Let 7, :==inf{t >0: X, =2z} for 0 < z < Xp.

1F1(1+af b,2 — b,Z).

U(s/k,2a/0?,2kXy/0?)
U(s/k,2a/0?,2kz/0?)

E[e=*™0iz] =

, for s > 0.

Theorem 6

The running minimum inf.cjo 71 X; has a continuous density on any
compact set K C (0, Xp), given by

1 [t o
z € K = Pcir,min(2) = 2*/ eMHIT o) (u, z)du
T J—oc0
with
(. 2) 2U((1 + iu)/K,2a/02,26X0 /a?)U((1 + iu)/k + 1,2a/02 + 1,2K2/0?)
u,z) = .

a2U((1 + iu)/k,2a/02,2Kz/02)?
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Numerical Tests

@ We consider the problem of pricing D-O and U-O barrier options
Tp = E{f(xr)l{inftemﬂ Xt>D}} and my = IE1[f(XT)1{.c,upt6[0j] x,<u}},
where the payoff function f(x) = e~ (x — K).

@ By the Lamperti transform we get

D = |: ( ) {infecpo, 7 Yt>\/7}:| and Tu = |: (YT)]‘{suptE[o’T] Yt<\/a}:|’
where g(x) = e (x* — K)4 and (Y¢):epo, 7-

@ We consider our interpolated drift implicit scheme

A2
Y _ Y + <2Y Y 2 t,+1> (t )—|—’y(Wt - Wt,‘)7 fort € [t,', t,'+1],
tit1

Yo = vV Xo and'y:%

For n large enough, the positive solution is

on @RI @) T (Wey —We )Y L 2 (Wey —We )+ Y
i 2+K% ' 26 /57




Numerical tests

o Wetake r=0.1, X, =100, a=0, k = -0.1, c =25 and T = 0.5.
For the D-O option the strike is K = 95, and the barrier D = 90 and for

the U-O option the strike is K = 105 and the barrier U/ = 120.

@ The benchmark prices given in [Davydov and Linetsky 2001] for the

D-O (resp. U-O) option is 10.6013 (resp. 0.7734).

@ The performance of the improved MLMC is given in the tables and

figure below.
| Accuracy | Price | MLMC cost [ MC cost [ Saving |
1073 10.669 | 2.588 x 108 | 6.752 x 10%0 | 260.91
5x 1073 | 10.668 | 1.051 x 107 | 3.376 x 108 | 32.13
102 10.668 | 2.510 x 10° | 4.220 x 107 16.81
2x 1072 | 10.677 | 6.187 x 10° | 5.275 x 106 | 8.52

Table: MLMC complexity tests for D-O barrier option pricing of 7p
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Numerical tests

| Accuracy |

Pricc [ MLMC cost [ MC cost | Saving |
103 0.77200 | 4.674x10° 4.221x108 90.32
5x 1073 | 0.76926 | 1.571x10° 2.11x10° 13.44
102 0.77015 | 3.809 x 10* | 2.638 x 10° 6.93
2x1072 | 0.78168 | 1.463 x 10* | 6.596 x 10* 4.51

Table: MLMC complexity tests for U-O barrier option pricing 7y

L

—=— Monte_Carle
-+ MLMC

i Monte_Carlo
|-+ MLMC

1072
cura

(a) Approximation of mp

ccuracy &

(b) Approximation of m,

Figure: Comparison for the performances of MLMC vs classical MC algorithm



Application to the CEV model

@ For CEV process solution to
dXi = pXedt + o X7dWe, £2>0, , Xo>0, pe€R anda>1

we consider the problem of pricing an U-O barrier option

U-0, X D-O,X .
M50% = E[F(X1)Lupecge,ry <3 | Ty O 1= E[F(XT) L it 0,1 05043 | |

@ For o > 1, by Feller's test the solution (X;):c[o, 7] is positive.

o So applying the Lamperti transformation, Y; = X}~ is well defined on
I = (0, +00) and satisfies

dY: = L(Y:)dt + vdW,;, where L(y) = (1 — o) (uy - a%zy’1>

and thus

U-0,x D-0,X _
Ny =k [g(YT)l{i"ftE[U,T] Yr>D1_“}] My [g( YT)l{S“ptEIO 7] Ye<u'— a}}
with g : x E R — f(xﬁ).
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Application to the CEV model

o we easily check assumptions (H1), (H3) and (H4)

@ On the one hand, by It8's formula the process (Z;:)o<¢<7 given by
—2(a—1)
Z; = )‘%(OtT)Z is a CIR process solution to

dZ, = (a — KZ:)dt — o\/ZzdW,, with a = 4§§f‘_ )1) and K = 2u(a — 1). J

2a—1

o We deduce that sup.cpo 71 E[Y{'] < oo for g > —52—;.

@ On the other hand to check assumption (H2) it is enough to show that

Sup ]E[\L (YOL(YDIP + IL"(Yo)P + L' (V) VP 4+ |L(Ye)|P] < o0

which is satisfied if sup,¢po, T]]E[y (4V3P)] < 0.

o This condition is satisfied when 4 < ji2=s (i.e. a € (1, {)) and

1
< 2c0—1 )
P< &la—1)
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Application to the CEV model

@ Besides, we have

f i __a __a
1860-)) < L8y (- tly 1721, for all oy € 1 = (0,00).

Theorem 7

Let g denotes a bounded payoff function satisfying :
3C >0 s.t. Vx,y >0,

g(x) —g()| < Clx = y|(L+ x| + |x|™"), forv>0.
Moreover, assume that conditions (H2), (H3) and (H4) are satisfied for
(14+0)(1+)5(1+¢)

p> ;
15

, withe,v >0 and § € (0,1/2).

If in addition inf,c(o 7] Y; has a bounded density in the neighborhood of
the barrier, then

Var(Qq — Q;) = O(hE+).
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Finally, for 6 € (0,1/2), if we choose « such that 1 < o < 22 < [ then

we can find p such that 6%2‘:}) >p> (1+5)(1l+j(5)5(1+8) > 10.

Thus Theorem 7 is valid provided that inf.cjo 77 Y; has a bounded density
in the neighborhood of the barrier D=2,

Remark.
One can also consider the CEV process for a € (3,1) solution to
dX: = (a — kX;)dt + o YdWs, with Xo > 0,2 > 0.
It can be easily checked that for a > 0 this SDE is well defined on
I = (0, +00). However, the condition that inf.cjo 71 X or sup,c(o 71 Xe

admits a continuous density in the neighborhood of the barrier seems to
be a challenging problem.
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Running maximum of the CEV process

@ Let us denote by 7x,1, := inf{t > 0: X; = z} the first time that the
CEV process (X;)¢>o starting at Xp hits the level z > Xj.

e From [Jeanblanc, Yor and Chesney 2009], the Laplace transform of the
hitting time 7x,¢, is given by

—ST; B+% € - = Wk’"(cxizﬂ)
e = ()" o (505 - 720) 0

with € = sign(u8), n = ﬁ, k = e(% + ﬁ) 3o and Wi, the
Whittaker's function

1
Wia(y) = y""2e™2U(n — k+ 3,20+ 1,y),

where U denotes the confluent hypergeometric function of second kind
and 3 =a —1 and C:)}Z'Z'
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Running maximum of the CEV process

Let (X;)o<t<T denotes the CEV process. Then Supepo,7] Xe has a
continuous density on any compact set K C (Xo, +00), given by

1 +oo . R
zeK— PCEV, Max(z) = g/‘ e(1+lU)T¢(Z, u)du,

oo
with
Lhiu 1 4 1 x—28y((L+iu 1,28
b(z u)szszflu(%ﬁ’l—‘r25’CX° )U(2M5+1,2+2ﬂ,cz ) A
Z Tti T J
UER 1+ &, cz26)2
and
Sz u) = —cz2p-1 (2B+1 1
1+ iu “w

)

i —2 i —
UL+ g5 — 58,1+ 55, X P U@+ 55 — §E8,2+ 55, cz%F)
1 14i 1 —2B)2
U(1+ﬁ— 2Mg’,1+ﬁ,cz B8)

X

for i < 0.
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Running minimum of the CEV process

@ Let us denote by 7x,|, := inf{t > 0: X; = z} the first time that the
CEV process (X;)r>o starting at Xy hits the level 0 < z < Xj.

@ By [Jeanblanc, Yor and Chesney 2009] the Laplace transform ofrx,, is

given by

_ B+3 « o g\ Min(eX2?)
e = () o (360 - 2720 e )

with € = sign(us), n = ﬁ, k= e(% + %) - ﬁ\u\ and the Whittaker

function .
Min(y) = y" 2e 51 Fi(n — k + 520+ 1y),

where 1 F; denotes the confluent hypergeometric function of the first
kind with 8 =« — 1 and C:M.
Bo?
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Running minimum of the CEV process

Theorem 9

Let (X:)o<t<T denotes the CEV process solution to (29). Then
inf.cjo, 71 Xt has a continuous density on any compact set K C (0, Xo),
given by

1 T2 TR
z € K= Pcev, min(2) = g/ eI (2, u)du,

— 00

2261 1A(5EE, 1+ &, X PR (5 +1,2+ 4, c272F)

w1+ 55) 1F1(5E5. 1+ 55, c2=20)?

‘T’(Zvu) , for > G

and

U(z,u) = cz= 271 <

28 1 )
T+iv  p(l+ )
1 1+i 1 —2p 1 1+ 1 -2
X1F1(1+E72#'/3“,1+E,cx0 D@ gy — e B e & )

R+ 5= BB Lt 3 o)

, for p < 0.
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Numerical testes

@ we used our interpolated drift implicit scheme

. . o 2
Y] = Y't’l_ +(1-a) (;LY';H — a20,,> (t—t;) +~v(Ws — Wy,), fort € [t;, tir1[,0<i<n
tit1

Yo = Xo!™%, and v = o(1 — a).

@ For n large enough, the positive solution to the above implicit scheme
is explicit and given by

—n
tiv1
V20200 1) (1t u(a—1) D) T (7 (Wey 3 = We+V L P4y (Wey — W)+ Y

2+2u(a—1) L

@ We choose a = 1.2, Xp =100, 4 =0.1, c = 0.2, T = 1. The payoff
function g(x) = e"T(Xﬁ — K)4 is a discounted call function with

r = 0.1. For the U-O option the strike is K = 90, and the barrier

D = 150. For the D-O option the strike is K = 100 and the barrier

U =90.
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The tables and the figures below confirm the high performance of the

improved MLMC.

| Accuracy [ Price [ MLMC cost [ MC cost | Saving |
107* [3.0390 | 8.226 x 10° | 7.34 x 10 [ 8922.33
5x107% | 3.0391 | 3.17 x 108 | 3.67 x 10! | 1155.67
103 3.041 | 7.436 x 107 | 4.587 x 101 | 616.91
102 3.0452 | 6.539 x 10° | 5.734 x 107 87.69
Table: MLMC complexity tests for the U-O barrier option pricing of I'I%O’X
’ Accuracy \ Price \ MLMC cost \ MC cost \ Saving ‘
5x10~% [ 11.102 | 6.483x10° 1.642x1013 | 2532.83
103 11.103 | 1.608 x 10° | 2.053 x 10'? | 1276.66
5x 1073 | 11.106 | 6.379x107 2.053%1010 321.77
102 11.094 | 1.587 x 107 | 2.566 x 10° 161.69

Table: MLMC complexity tests for the D-O barrier option pricing of I'IE{’O‘X

Numerical tests
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Numerical tests

108 — ———
I+ Monte_ |—*— Monte_Carlo
|-+ MLMC I~ |-+ mimc

™~ 105
10 e
\ —
™~

2 10t ™~ 2 10

g = § 10

b Y

10°
10t
10?
10 10 10 10
accuracy &

accuracy €

(a) Approximation of I'I%'O’X (b) Approximation of HE{_O’X

Figure: Comparison for the performances of MLMC vs classical MC algorithm
under the CEV model
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© The two-dimensional setting : Heston model
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Log-Heston process

@ For a stochastic volatility model of log-Heston (X;).c[o, ] solution of
the following SDE:

1
dX; = (= 5Ve)dt+/V; d (,)W; V1o p2W§) . (11)
th = H(Q — Vt)dt + g\/ thth.

with x, 0, o, Xo, Vo >0, p€R, pe[-1,1], T >0, and (W?)ecpo, 1),
(WY )tepo, 1) are two independent Brownian motions.
@ Conditioned on V,, the variance process V; at time t, t > u

d 02(1 —exp (—k(t — u))) 4k exp (—k(t — u))
Ve = 4k X5(02(1 —exp (—£(t — u)) V”)’ ’

where x2(\) denotes a non central chi-squared random variable with
d:= ‘f—;‘ degrees of freedom and non-centrality parameter \.
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Log-Heston process

@ For 0 < u<t<T we can rewrite (11) as follows

1 t t
Xt:Xu—f—u(t—u)—E/ Vsds—|—§<Vt—Vu—/<;0(t—u)+/<c/ Vsds>

t
+\/17p2\/ \/VSdWss7

since

t 1 t
/\/VSdWS":;<Vt—Vu—/@9(t—u)+H/ Vsds).

@ In what follows, we assume that the Feller condition 2x6 > &2 holds
true to guarantee the positivity of the CIR process.
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Semi-exact log-Heston scheme

o For t; = % 0 < i < n, we consider the Semi-exact log-Heston discrete
scheme

~n n ]-
Xoo = X+ (1= 5 Vo)t — 1)

ﬁ (Vt;+1 - Vl’f - K‘e(tl'+l - tl) + K/Vti(tl"f‘l - tl))
+ v 1 - Vv Vt’ t1+1

@ We introduce the following interpolated Semi-exact log-Heston scheme

1
—5Va)(e—1)

+ g(ﬂ(vt, L= Vi)t — 1) = 6O(t — ) + K Ve (£ — 1)

V1= 2/ Vi (We — W),

X=X+ (n

@ The main advantages of this Brownian interpolation is that it
enables straightforward use of the Brownian bridge technique for
pricing Barrier options.
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Strong convergence rate

Theorem 10

Let T > 0. For all p > 1, there exists a constant C, such that

I>1/2

1
max <E|Xt,. —7:,\")'3 < C,,(
' n

1<i<n
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Brownian bridge and Semi-exact log-Heston scheme

@ The above barrier option prices can be approximated by

n—1 n—1
p— ~~n p— ~~n
D= E[f(XT) I IO l{i"fre[r,-,t,-ﬂ]yg>77}} and my = E[f(XT) I IO 1{5uPt€[t,-,t,-+1]Y?<u}j| ’
1= 1=l

@ To get more accurate approximations, we use the Brownian bridge
technique. For x € R, (x)4 stands for max(x, 0).

Proposition 2

Under the above notations, for h = % we have

*2(U*YZ)+(U*YZH)+)
(1—p?)Vih '

n—1
Ty = E[f(Y"T) H(l = ﬁ,-)], where p; = exp (
i=0

and

N = —2(X; — D)+ (Xt . — D)+
70 = E|f(X5 1—7g;)|, whereq; := exp ! oL .
b =E[f( T)EO< )] ( A= )
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Brownian bridge for the MLMC method

@ Thus, the improved MLMC method approximates 7, by

1 &, L1 X
= - = —C
Py = *Zpo,kJFZ*Z(PM—P#Lk)’
No N,
, 2 2U-X2)(U=X2)
= X N — M N
Poi=fF(X7) [T (1 =p7") with 5 = exp ( (l—tp:)Vphz Bt
te

i=0
__pt—1

__ot—1
—2(U =Xz )e(U=Xz, )
(1= PV ih )

l _
Py = f(X> )H 11— withpf“zexp(

where the condition E[ﬁ’;_l] =E[P,_,] is satisfied.
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Brownian bridge for the MLMC method (continued)

@ Similarly, the improved MLMC method approximates 7p by

Qp = No ZGOk"_Z Z(Qek Q;fl,k)a (12)
=1

YA 14
2t 1 —2(??{ — D)_,.(Yfl’. — D)+
— (X 1 _ ith —e ( i i+1 )’
Q= F(X7) 11 a’) with 3 = exp (1= p?)Vyehe
21 2(Y2£ D). (Y2 . D)
. -1 T -1 1 - i ada
Qf—l = f(XT )1_1(1_(712 Wlth q’ _exp( ( — )V{’ 1/71.7 )
L t

47 /57



Extreme path events

Lemma 11

For any 1 > 0 and hy = 27*T, the following extreme path events satisfy
725 72271 _
max P (max (|Xt_tz [, [ Xz |) > h, 7’) = o(h})
0<i<2! ! !

ot __~f—1 Y4 __ot—1
max P (max ((|th_e - Xi,z |, 1 Xee — Xfiz l, |Xfie - Xi,z |)) > h;/Ln) = o(h{

0<i<2?

a_
IP( sup |W: — Wye| > h? ”> = o(h))
te[o,T] !

for all g > 0.

48 /57



Extreme path events

Lemma 12

Let 2k > o2, for any n > 0 and hy = 27*T, the following extreme path
events satisfy

1 1 _ 2K0
Ogag)élp (max ((|m|, |V7t;|) > hg "7) = O(hg)7 for all O < q < ?7]

i

_ <0

max IP’( |) > hz/2 17) =o(h}), forall0 < q< ,—271

0<i<2¢ o
i+1

max ]P’(/ Veds > hy~ n>—0(h2)7 for all g > 0
0<i<2t

max P sup | \/ dWZ| > h2 ") =o(h]), forallq>0.
0<is2® \reltf,tt,,] Jof
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MLMC variance and complexity analysis

@ Let us assume that there exists a positive constant a > % such that
x0/a? > a so that the Feller's condition is satisfied.

@ We need the following assumptions. Let f denote a payoff function
satisfying: 3C; > 0s.t. Vt > 0,x,y € R,

[f(x) = f(y)l < Glx =yl
This implies 3C, > 0 s.t. Vx € R,
[F()] < G(1+[x]).

@ Provided that inf,c[o, 71 X;: has a bounded density in the neighborhood
of the barrier D, we get

i 1 3 1, 1
Var(Qz - Qe) =O0(h; ")foré e (m, 5), with a > 5 J
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Antithetic MLMC method for Heston model

@ We define the Heston model solution to

dS. = pSedt + \/ VS d W (13)
dVi = k(0 — V) dt + o/ VedW,

where W$ and W" are two correlated B.m. with correlation p-

e Fort; = %, 0 < i < n, we consider the following approximate scheme
[Giles; Szpruch, 2013]:

JRS n/s
5 th (( Wfi+1

1 - -
+ 7o ((Ws, = W)Wy, — Wy) — ph) ),

&n
5ti+1

tir W;) + - Wtsy)z - h)

. N - 1
Vi = Vi +6(0 — Vi, )b+ o/ Ve (W — W) + 5{74((th[1 — Wty)z — h).
Where 3,_? is the truncated Milstein scheme with step h = L

e
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Antithetic MLMC method

@ Thus, the improved MLMC method approximates 7p by

1 I LN
Q=7 > Qu+ D7 2 (5@ + @7 — Q).
0 %=1 = k=1

where (ézf,k)lékSNz and (chq,k)lSkSNz are respectively independent
copies of @Z and @g_l given by

21 —2(582 - D), (5% - D),
A & 0 t! t!
Qf = f 52/6 1-— A,-2[ with ,\isz — ex ( i _ i+l )
FrOD e win & =ee (0
21 _2(§2571 - D)+(~§2;71 - D)+
o) = f §2271 1— A.2£71 with ",222 ex & _ ti .
Gy =f87 ) [TO-aF ) with & p( TSI )
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Numerical Tests

@ we consider a D-O Call option with strike K = 100 and barrier B = 75.
We suppose that the stock price is following a Heston model (13) with
parameters So = 100, V, =0.1, 0 =0.1, 0 =0.1, k =2, p = —0.5 and

= —0.02.

@ The performance of the improved MLMC and Antithetic MLMC is
given in the table and figure below.

Estimation « I} MLMC Complexity
MLMC Semi Exact | 1.173726 | 0.962958 £2.03
Antithetic MLMC | 0.724667 | 0.662456 g247

Table: Time complexity of MLMC Semi xact Vs antithetic MLMC methods
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Numerical Tests
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Figure: Performance of the Antithetic MLMC algorithm under the Heston

model for pricing Down & Out Barrir options
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Numerical Tests
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Figure: Performance of the MLMC Semi Exact algorithm under the Heston

model for pricing Down & Out Barrir options
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