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Stable CIR process : properties and moments estimates

Representation

Stable CIR process - Continuous Branching process with Immigration

dXt = (a− bXt)dt + σ
√
XtdBt + δX

1/α

t−
dLαt , t ≥ 0 x0 ≥ 0

I (Lαt ) non-symmetric pure-jump Lévy process, strictly α-stable, with triplet
(0, 0,Fα) and representation

Lαt =

∫ t

0

∫
zµ̃(ds, dz), Ee iuL

α
1 = e−|u|

α(1−signe(u) tan(πα/2))

where µ̃ = µ− µ is a compensated Poisson random measure with
compensator

µ(dt, dz) = dtFα(dz)

where the Lévy measure is given by

Fα(dz) =
cα
z1+α

1(0,+∞)(z)dz , 1 < α < 2

I (Bt) standard Brownian motion independent of (Lαt )
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Stable CIR process : properties and moments estimates

Representation

Laplace transform

E(e−uXt ) = exp

(
−x0vt(u)−

∫ u

vt (u)

F (z)

R(z)
dz

)
,

where t → vt(u) is the unique locally bounded solution of

∂

∂t
vt(u) = −R(vt(u)), v0(u) = u. (1)

R(z) =
σ2

2
z2 +

δ
α

α
zα + bz , F (z) = az ,

with δ = δ(α/| cos(πα
2

)|)1/α.
I σ = 0 explicit expression of vt(u)

if b 6= 0 vt(u) =
ue−bt(

1 + δ
α

αb
uα−1 (1− e−(α−1)bt)

) 1
α−1

,

if b = 0 vt(u) = u

(
α

α + (α− 1)δ
α
uα−1t

) 1
α−1

.

I σ 6= 0 δ 6= 0 not explicit
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Stable CIR process : properties and moments estimates

Representation

dXt = (a− bXt)dt + σ
√
XtdBt + δX

1/α

t−
dLαt , t ≥ 0 x0 ≥ 0

I Existence and uniqueness of a strong solution such that

P(Xt ≥ 0, ∀t ≥ 0) = 1

if a ≥ 0, b ∈ R, σ ≥ 0, δ ≥ 0

I The solution satisfies
P(Xt > 0, ∀t ≥ 0) = 1

if x0 > 0, 2a ≥ σ2 > 0, b ∈ R, δ ≥ 0

For the pure-jump stable CIR process (σ = 0)

P(Xt > 0, ∀t ≥ 0) = 1

if a > 0, b ∈ R, δ > 0

Kawazu-Watanabe (71), Fu-Li (10), Jiao-Ma-Scotti (18)
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Stable CIR process : properties and moments estimates

Moment estimates for the stable CIR process

Moment estimates

Proposition Bayraktar-C. (24)

We have

1. ∀p ∈ (0, α)

E|Fs

(
sup

s≤u≤t
X p

u

)
≤ Cp(1 + X p

s )

2. if σ = 0, δ > 0, a > 0, ∀p > 0

sup
t∈[0,1]

E
(

1

X p
t

)
< +∞

3. if σ > 0, δ > 0, 2a > σ2, ∀1 ≤ p < 2a/σ2

sup
t≥0

E
(

1

X p
t

)
< +∞

2. 3. proof based on the expression of the Laplace transform of a CBI process
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Stable CIR process : properties and moments estimates

Recent estimation results

Parametric estimation : recent results for the stable CIR process

I Small noise and pure-jump stable process Ma-Yang (14), Yang (17)

dXt = (a− bXt)dt + εδX
1/α

t−
dLαt , t ≥ 0, x0 > 0

α ∈ (1, 2) known
Observations : (Xi∆n )i∈{1,...,n}, ∆n → 0 , n∆n = T fixed, (T = 1)
Estimation of (a, b, δ) by approximating the likelihood function (depends
on α)

I Fixed step-size observations, long-time behavior Li-Ma (15)

dXt = (a− bXt)dt + δX
1/α

t−
dLαt , t ≥ 0, x0 > 0

Observations : (Xi∆)i∈{1,...,n}, ∆ fixed and n→∞
Estimation of (a, b) assuming b > 0, (Xt) is geometrically ergodic
Explicit least squares estimators of (a, b) (independent of α and δ) based
on the equation satisfied by ebtXt
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Stable CIR process : properties and moments estimates

Recent estimation results

I Continuous time observations with σ > 0 Barczy-Ben Alaya-Kebaier-Pap (19)

dXt = (a− bXt)dt + σdBt + δX
1/α

t−
dLαt , t ≥ 0, x0 > 0

Observations : (Xt)t∈[0,T ], T →∞

a ≥ 0, σ > 0, δ > 0 and α ∈ (1, 2) are known

Estimation of b

Explicit expression of the maximum likelihood estimator b̂ from Girsanov’s
Theorem (depends on a ≥ 0, δ > 0 and α)
I b > 0 : consistency and asymptotic normality with rate

√
T

I b = 0 : consistency
I b < 0 : consistency and asymptotic mixed normality with rate e−bT
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Estimation of a pure-jump stable CIR process

Estimation of a pure-jump stable CIR process

In this part

dXt = (a− bXt)dt + δX
1/α

t−
dLαt , t ≥ 0, x0 > 0

I Estimation of θ = (a, b, δ, α)
(Xt)t∈[0,1] solves the stochastic equation for the parameter value
θ0 ∈ (0,∞)× R× (0,∞)× (1, 2) = Θ

I High-frequency observations : (X i
n

)i∈{0,...,n}

I Estimating functions method based on an approximation of the conditional
distribution of X i

n
given X i−1

n

C.-Gloter (19) (20) : SDE with Lipschitz coefficients, driven by symmetric locally

stable process
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Estimation of a pure-jump stable CIR process

Estimation method

Pure jump stable CIR process : estimation method

I Euler approximation

X i
n
w X i−1

n
+ (a− bX i−1

n
)

1

n
+ δX

1/α
i−1
n

(Lαi
n
− Lαi−1

n
)

Lαi
n
− Lαi−1

n

has the distribution of 1

n1/α L
α
1

I Approximation of the log-likelihood function

Ln(θ) =
n∑

i=1

log

 n1/α

δX
1/α
i−1
n

ϕα

n1/α
X i

n
− X i−1

n
− a

n
+ b

n
X i−1

n

δX
1/α
i−1
n


where ϕα is the density of Lα1

I Estimator
θ̂n solution of ∇θLn(θ) = 0 on Θ
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Estimation of a pure-jump stable CIR process

Joint estimation result

Estimation results
We define Gn(θ) = −∇θLn(θ) (recall that Ln is an approximation of the
log-likelihood function)
and Jn(θ) = ∇θGn(θ) (approximation of the information)

Let un be the non-diagonal rate

un =

(
1

n1/α0−1/2 Id 0

0 1√
n
vn

)
, vn =

(
δ0 −δ0 log(n)/α0

0 1

)

Proposition Bayraktar-C. (24)

1.
sup

θ∈W (η)
n

log(n)q||uT
n Jn(θ)un − I (θ0)|| → 0

2. uT
n Gn(θ0) stably converges in law to I (θ0)1/2N

where I (θ0) is a symmetric non-negative and non-singular matrix
depending on (Xt)t∈[0,1] and N is a standard Gaussian variable
independent of I (θ0)
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Estimation of a pure-jump stable CIR process

Joint estimation result

I From the previous convergences, we obtain the following result

Theorem Bayraktar-C. (24)

There exists a sequence (θ̂n), such that limn P(Gn(θ̂n) = 0) = 1, that converges
in probability to θ0 .

Moreover we have the stable convergence in law with respect to σ(Lα0
s , s ≤ 1)

u−1
n

(
θ̂n − θ0

)
Ls−→ I (θ0)−1/2N ,

where N is a standard Gaussian variable independent of I (θ0)

I If α0 is known (or δ0 known), we obtain a similar result in estimating
(a, b, δ) (or (a, b, α)) with the diagonal rate

un =

(
1

n1/α0−1/2 Id 0

0 1√
n

)
, un =

(
1

n1/α0−1/2 Id 0

0 1
log n
√
n

)
and non-singular information
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Estimation of a pure-jump stable CIR process

Joint estimation result

Information for the estimation of (a, δ, α)

I (a, δ, α) =

 1
δ2 Eh2

α(Lα1 )
∫ 1

0
ds

X
1/α
s

Sym.

I 2,1 I 2,2



I 2,1 =


1
δ
E(hαkα)(Lα1 )

∫ 1
0

ds

X
1/α
s

− 1
δα2 E(hαkα)(Lα1 )

∫ 1
0

log(Xs )

X
1/α
s

ds − 1
δ
E(fαhα)(Lα1 )

∫ 1
0

ds

X
1/α
s



I 2,2 =

 Ek2
α(Lα1 ) − 1

α2 Ek2
α(Lα1 )

∫ 1
0 log(Xs)ds − E(kαfα)(Lα1 )

Sym. Ef 2
α(Lα1 ) + 1

α4 Ek2
α(Lα1 )

∫ 1
0 log(Xs)2ds + 2

α2 E(fαkα)(Lα1 )
∫ 1

0 log(Xs)ds


with hα = ϕ′α/ϕα, kα(z) = 1 + zhα(z), fα = ∂αϕα/ϕα.
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Estimation of a pure-jump stable CIR process

Toy model

Some partial results on efficiency in high-frequency setting : a toy model

Xt = x0 + at + δSαt

Sαt : symmetric α-stable process
observations X i

n
0 ≤ i ≤ n, the log-likelihood function is explicit

Brouste-Masuda (18)

I LAN property with non-diagonal rate un in estimating θ = (a, δ, α) and
non-singular information I

un =

( 1

n1/α−1/2 0

0 1√
n
vn

)
, vn =

(
δ0 −δ0 log(n)/α0

0 1

)

I (a, δ, α) =

 1
δ2 Eh2

α(Sα1 ) 0 0
0 Ek2

α(Sα1 ) −E(kαfα)(Sα1 )
0 −E(kαfα)(Sα1 ) Ef 2

α(Sα1 )


with hα = ϕ′α/ϕα, kα(z) = 1 + zhα(z) and fα = ∂αϕα/ϕα.
(extension to Lαt , the information is not bloc diagonal)
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Estimation of a pure-jump stable CIR process

Drift estimation

Drift estimation

I The previous result states existence of a consistent estimator with optimal
rate of convergence but there might be other sequences that solve the
estimating equation that are not consistent.

I Uniqueness is obtained if δ0 and α0 are known or if we have preliminary
estimators δ̃n and α̃n.

Theorem Bayraktar-C. (24)

Let Gn,d be the approximation of the score function restricted to the drift
parameters (a, b)

Gn,d(a, b) = ∇(a,b)Ln(a, b, δ̃n, α̃n)

We assume that (a0, b0) ∈ Int(Θ) for a compact set Θ ⊂ R+ × R and that√
n

log(n)p
(δ̃n − δ0) and

√
n

log(n)p
(α̃n − α0) are tight, for p > 0.

Then any sequence (ãn, b̃n) that solves Gn,d(ãn, b̃n) = 0 converges in probability
to (a0, b0) and this sequence is unique.

Moreover the sequence n1/α0√
n log(n)p

(ãn − a0, b̃n − b0) is tight.
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Estimation of a pure-jump stable CIR process

Preliminary estimators and one-step improvement

Preliminary estimators (δ̃n, α̃n)

Non parametric methods for semimartingales based on p-order power variation
(Todorov-Tauchen (11), Todorov (13), Todorov (15))
The first and two order power variation are defined by

V 1
n (p,X ) =

n∑
i=2

|∆n
i X−∆n

i−1X |
p , V 2

n (p,X ) =
n∑

i=4

|∆n
i X−∆n

i−1X+∆n
i−2X−∆n

i−3X )|p

with ∆n
i X = X i

n
− X i−1

n
.

Theorem Todorov (13)

1. For p ∈ (0, α), we have the convergences in probability

np/α

n
V 1

n (p,X )→ C0(α, δ),
np/α

n
V 2

n (p,X )→ 2p/αC0(α, δ)

2.

α̃n =
p log 2

log(V 2
n (p,X )/V 1

n (p,X ))
1V 1

n (p,X ) 6=V 2
n (p,X )

√
n(α̃n − α) stably converges in law, for p ∈ ( |α−1|

2(α∧1)
, α/2) and α > 2/3.
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Estimation of a pure-jump stable CIR process

Preliminary estimators and one-step improvement

We can apply the previous result to the stable CIR process X wit p = 1/2 since
α0 > 1.
We obtain the preliminary estimator α̃n which is consistent with rate of
convergence

√
n.

Next, we estimate δ by

δ̃n =

 1

mp(α̃n)

np/α̃n

n

n∑
i=2

∣∣∣∣∣∣∆
n
i X −∆n

i−1X

X
1/α̃n
i−1
n

∣∣∣∣∣∣
p1/p

where mp(α) = E|Lα1 − L
α
1 |p = E|Sα1 |p where Sα1 is symmetric α-stable

For p = 1/2,
√
n

log(n)
(δ̃n − δ0) is tight
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Estimation of a pure-jump stable CIR process

One-step improvement

One-step improvement - implementation

I Existence but not uniqueness result for the joint estimation
I There exists a joint estimator θ̂n = (ân, b̂n, δ̂n, α̂n) consistent, rate optimal

and probably efficient that solves Gn(θ̂n) = 0.

I Preliminary estimators δ̃n and α̃n

I Very easy to implement, consistent not efficient

I Preliminary estimators ãn and b̃n
I Obtained by solving ∇(a,b)Ln(a, b, δ̃n, α̃n) = 0 (unique solution)
I Consistent but not rate optimal

I One-step improvement or k-step improvement
I Use the theoretical properties of θ̂n to improve the asymptotic properties of

the preliminary estimator θ̃n
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Estimation of a pure-jump stable CIR process

One-step improvement

I One-step improvement : start with θ̂0,n = θ̃n and next

θ̂1,n = θ̂0,n −∇θGn(θ̂0,n)−1Gn(θ̂0,n),

Requires the computation of the density ϕα of the non-symmetric stable
variable Lα1 (as well as its derivatives)

I We can prove u−1
n (θ̂1,n − θ̂n) = o(1)

Then
u−1
n

(
θ̂1,n − θ0

)
= u−1

n

(
θ̂n − θ0

)
+ o(1)

Corollary

We deduce that θ̂1,n inherits the asymptotic properties of θ̂n :
we have the stable convergence in law with respect to σ(Lα0

s , s ≤ 1)

u−1
n

(
θ̂1,n − θ0

)
Ls−→ I (θ0)−1/2N ,

where N is a standard Gaussian variable independent of I (θ0)
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Stable CIR process with Brownian component

Stable CIR process with Brownian component

We now consider

dXt = (a− bXt)dt + σ
√
XtdBt + δX

1/α

t−
dLαt , t ≥ 0, x0 > 0

I High-frequency observations : (X i
n

)i∈{0,...,n}

I Estimation of (σ, δ, α)

2a > σ2 > 0, δ > 0, α ∈ (1, 2)

I Problem : asymptotic bias due to the superposition of a Brownian Motion
and a Lévy process with infinite variation
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Stable CIR process with Brownian component

Toy model

Toy model
To explain the problem, we consider the process

Xt = σBt + δLαt , α ∈ (1, 2)

Estimation of σ2 and α from the increments ∆n
j X = X j

n
− X j−1

n

Mancini (2009), Äıt-Sahalia and Jacod (2009), Jacod and Todorov (2014-2016)

Bull (2016), Cooper Boniece, Figueroa-López and Han (2022)

I Truncated quadratic variation
n∑

j=1

∆n
j X

21|∆n
j X |≤

u
nτ
, u > 0, 0 < τ <

1

2

I Real part of the characteristic function

Ln(u) =
1

n

n∑
j=1

cos(u
√
n∆n

j X ), u > 0

I Number of large jumps
n∑

j=1

1|∆n
j X |≥

u
nτ
, u > 0, 0 < τ <

1

2
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Stable CIR process with Brownian component

Toy model

Bias expansion

I Truncated quadratic variation

E∆n
j X

21|∆n
j X |≤

u
nτ

=
σ2

n
+

σ2δα

uαn2−ατ C1,α +
δαu2−α

n1+τ(2−α)
C2,α + Rn

I Real part of the characteristic function

E cos(u
√
n∆n

j X ) = Re−u2σ2/2e−uαδαnα/2−1(1−i tan(πα/2))

E cos(u
√
n(∆n

j X −∆n
j+1X )) = e−u2σ2

e−2uαδαnα/2−1

symmetrised version

I Number of large jumps

E1|∆n
j X |≥

u
nτ

=
δα

uαn1−ατ C1,α +
σ2δα

uα+2n2−(α+2)τ
C2,α +

δ2α

u2αn2−2α
C3,α + Rn
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Stable CIR process with Brownian component

Toy model

Limit theorems and estimation
I Truncated quadratic variation

√
n

(
n∑

j=1

∆n
j X

21|∆n
j X |≤

u
nτ
− σ2 − σ2δα

uαn1−ατ C1,α −
δαu2−α

nτ(2−α)
C2,α

)
Ls−→ N (0, 2σ4)

Extension to a semimartingale : estimation of the integrated volatility (Cooper

Boniece, Figueroa-López and Han (2022) use this result for different values of u

to eliminate the bias, rate optimal and efficient with restrictions on α)
I Real part of the characteristic function (symmetrised version)

√
n
(
Ln(u)− e−u2σ2

e−2uαδαnα/2−1
)
Ls−→ N (0,

e−4u2σ2

− 2e−2u2σ2

+ 1

2
)

Extension to a semimartingale : estimation of the integrated volatility (Jacod and

Todorov (2014-2016) local volatility estimation by taking the logarithm and

combination with different values of u, rate optimal and efficient ∀α ∈ (0, 2))
I Number of large jumps

n−ατ
n∑

j=1

1|∆n
j X |≥

u
nτ
→ δα

uα
C1,α

Extension to a semimartingale : estimation of α (Äıt-Sahalia and Jacod (2009)

non optimal rate of estimation, Bull (2016) near optimal rate)
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Stable CIR process with Brownian component

Stable CIR process

Stable CIR with Brownian component and infinite variation jump
component

We come back to the process

dXt = (a− bXt)dt + σ
√
XtdBt + δX

1/α

t−
dLαt , t ≥ 0, x0 > 0

The previous methods work for the CIR process but they are not completely
satisfactory.

We propose an alternative estimation method via estimating functions
(extension of Mies (2020))

I combining the real part of the characteristic function and smooth
threshold exceeding

I based on the expansion of Ef (u
√
n(∆n

j X −∆n
j+1X ))

We obtain the following results (forthcoming paper)

I joint estimation of (σ2, δ, α)

I rate optimal and efficient estimator of σ2 for α ∈ (1, 2)

I near rate optimal estimator of (δ, α)
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Stable CIR process with Brownian component

Stable CIR process

Thank you for your attention
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