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Higher-order interactions I

Motivations
Networks or graphs focus on pairwise interactions
These type of pairwise interactions can already be quite elaborate:
undirected/directed, binary/weighted, simple/multiple,
static/dynamic, multiplex or multi-layers, . . .
Nonetheless pairwise interactions are not sufficient to describe the
nature of complex interactions :

▶ e.g. the presence of a 3rd species may modify the interaction of 2 other
species ;

▶ e.g. a collaboration between 3 authors is stg different from 3 pairwise
collaborations between these same authors ;

Collective interactions or group interactions are richer than just
pairwise interactions

↪→ These are called higher-order interactions (HOI).
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Higher-order interactions II

Where do we find HOI?
Social networks: triadic and larger groups (as early as Simmel, 1950)

Scientific co-authorship,
Interactions between more than two species in ecological systems,
HOI between neurons in brain networks,
Metabolites in chemical reactions,
etc

These interactions CAN NOT be represented by a graph.
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Higher-order interactions III

This is a nice recent review (2020):
Physics Reports 874 (2020) 1–92

Contents lists available at ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep
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a b s t r a c t

The complexity of many biological, social and technological systems stems from the
richness of the interactions among their units. Over the past decades, a variety of
complex systems has been successfully described as networks whose interacting pairs of
nodes are connected by links. Yet, from human communications to chemical reactions
and ecological systems, interactions can often occur in groups of three or more nodes
and cannot be described simply in terms of dyads. Until recently little attention has
been devoted to the higher-order architecture of real complex systems. However, a
mounting body of evidence is showing that taking the higher-order structure of these
systems into account can enhance our modeling capacities and help us understand and
predict their dynamical behavior. Here we present a complete overview of the emerging
field of networks beyond pairwise interactions. We discuss how to represent higher-
order interactions and introduce the different frameworks used to describe higher-order
systems, highlighting the links between the existing concepts and representations. We
review the measures designed to characterize the structure of these systems and the
models proposed to generate synthetic structures, such as random and growing bipar-
tite graphs, hypergraphs and simplicial complexes. We introduce the rapidly growing
research on higher-order dynamical systems and dynamical topology, discussing the
relations between higher-order interactions and collective behavior. We focus in partic-
ular on new emergent phenomena characterizing dynamical processes, such as diffusion,
synchronization, spreading, social dynamics and games, when extended beyond pairwise
interactions. We conclude with a summary of empirical applications, and an outlook on
current modeling and conceptual frontiers.
©2020 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

⇤ Corresponding author.
E-mail addresses: battistonf@ceu.edu (F. Battiston), v.latora@qmul.ac.uk (V. Latora), giovanni.petri@isi.it (G. Petri).
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0370-1573/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/
licenses/by/4.0/).
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Pairwise vs HOI

HOI are defined as sets of interacting entities.
e.g. V = {a, b, c , d , e}; I = {{a, b, c}, {a, d}, {c, d}, {c , e}}

a

b
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e

(a) Pairwise interactions

a

b

c

d

e

(b) A HOI in blue

The order of an interaction is the number of entities that interact - 1.
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Naïve Graph representation: clique expansion graphM.T. Schaub, Y. Zhu, J.-B. Seby et al. Signal Processing 187 (2021) 108149 

Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 
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Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 
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Picture from Schaub et al. 2021

Each interaction is transformed into a clique = all edges between pairs
are present ;
HOIs actually disappeared !
Too simplistic: For e.g, in co-authorship 1 paper with 3 authors ̸= 3
different papers written by pairs of those authors.
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Fig. 7. Different transformations on an example hypergraph. A The original hypergraph. B The dual hypergraph. C The clique expansion. D The star expansion. E The line 
graph. F The line expansion. 
tration) may be computed in terms of (weighted variants of) the 
second possible projection of the incidence matrix Z , namely Z ! Z . 
Apart from these three canonical types of graph representations 
(star, clique, and line graph) that can be derived from the incidence 
matrix Z and additional (weighting) transformations, a few other 
matrix-based schemes have been proposed for representing hyper- 
graphs. For instance, the recent paper [101] proposes the so-called 
line expansion of a hypergraph (different from the line graph; see 
Fig. 7 F), which is isomorphic to the line graph of its star expan- 
sion and aims to unify the clique and star expansions. In the line 
expansion, each incident vertex-hyperedge pair is considered as a 
“line node” and two “line nodes” are connected if they share either 
the vertex or the hyperedge. We would like to remark that in some 
cases we might be more interested in the dual of one hypergraph 
in which the roles of vertices and hyperedges are interchanged and 
the incidence matrix is Z ! [78] ; see Fig. 7 B. 

While we have so far considered only homogeneous hyper- 
graphs, Laplacian matrices have also been proposed for more gen- 
eral hypergraph models. For instance, [73,75,88] use variants of 
the clique expansion to derive matrix representations of hyper- 
graphs with edge-dependent vertex weights or inhomogeneous hy- 
peredges. Specifically, in [73,75] hypergraphs with edge-dependent 
vertex weights are projected onto asymmetric matrices, corre- 
sponding to induced directed graphs with self-loops. The authors 
then use established combinatorial and normalized Laplacians for 
digraphs [102] applied to these matrices to derive a Laplacian ma- 
trix for hypergraphs. Finally, in [88] , a novel algorithm for assign- 
ing edge weights to the graph representation is proposed, allowing 
for non-uniform expansions of hyperedges. 

As the above discussion shows, there is an enormous variety of 
matrix-based representations for hypergraphs, and the relative ad- 
vantages and disadvantages of these constructions are still sparsely 
understood. Ultimately, the choice of a particular matrix repre- 
sentation corresponds to a specific model for what constitutes a 
smooth signal on a hypergraph. We believe that a better under- 
standing of the spectral properties of the individual constructions 
will thus be an important step for choosing good matrix represen- 
tations for different application scenarios. 
5.2. Tensor-based hypergraph representations 

Instead of working with matrix-based representations, hyper- 
graphs can alternatively be represented by tensors. A tensor is sim- 
ply a multi-dimensional array, whose order is the number of in- 
dices needed to label an element in the tensor [90] . For instance, 
a vector and a matrix are a first-order and a second-order tensor, 

respectively. Several different versions of a hypergraph adjacency 
tensor have been proposed in existing work [103–112] . In this sec- 
tion, we focus on unweighted hypergraphs to keep our exposition 
accessible and to remain consistent with the majority of the exist- 
ing work in this domain. 

Due to their relative simplicity, k -uniform hypergraphs have 
been first studied in the literature. As every hyperedge is of the 
same order, a k -uniform hypergraph with N nodes can be naturally 
represented by a k th-order adjacency tensor A ∈ R N ×N ×···×N , where 
each index ranges from 1 to N, and the entries of A are defined as 
follows [103,104] 
A i 1 ···i k = 1 , if { v i 1 , · · · , v i k } ∈ E . (30) 
Every other entry in A is set to zero. Similarly to how it can be 
meaningful to normalize the adjacency matrix, normalized ver- 
sions of this adjacency tensor have been proposed as well. In 
[105] , the tensor in (30) is normalized by 1 / (k − 1)! . This normal- 
ization guarantees that the degree of a vertex v i , i.e., the num- 
ber of hyperedges that it belongs to, can be retrieved by sum- 
ming the entries in the tensor whose first mode index is i , namely 
deg (v i ) = ∑ N 

i 2 , ··· ,i k =1 A ii 2 ···i k ; see [108] . This is desirable because it 
resembles the way of obtaining the degree of a vertex in a graph 
from its adjacency matrix. Another normalized adjacency is pro- 
posed in [106] where 
A i 1 ···i k = 1 

(k − 1)! 
k ∏ 

j=1 
1 

k √ 
deg (v i j ) , if { v i 1 , · · · , v i k } ∈ E, (31) 

and the rest of the entries are equal to zero. Its associated nor- 
malized Laplacian tensor is defined as L = J − A where J is a 
tensor of the same size as A , and its entry J ii ···i = 1 if deg (v i ) > 0 
and 0 otherwise. This normalization ensures that L has certain 
desirable spectral properties that mimic those of the normalized 
graph Laplacian [106] . For example, the eigenvalues of L as defined 
in [113] are guaranteed to be contained in [0,2]. Having a bounded 
spectrum has shown to be useful in GSP for the stability analysis 
of graph filters [114] . 

For hypergraphs with non-uniform hyperedges, i.e., hyperedges 
of different sizes, the above construction does not extend easily. 
Since some edges will have smaller cardinality than others, some 
indices in the adjacency tensor would simply be undefined. A naive 
approach would be to keep an adjacency tensor for each observed 
cardinality of hyperedges, but this approach is computationally im- 
practical. An alternative is to augment the above construction of 
an adjacency tensor for general homogeneous hypergraphs as fol- 
lows. Denote by m the cardinality of the largest hyperedge across 

13 

Picture from Schaub et al. 2021

No loss of information for
hypergraphs with multiples
hyperedges and self-loops;
But "higher-order" now
translates into node degrees
in one part;
2 two parts don’t play
symmetric roles: statistical
models on bipartite graphs
are not appropriate here
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Other graph representations

There are other graph-representations of HOIs

But none of it may completely capture these

↪→ There are 2 mathematical objects to represent HOIs : Simplicial
complexes and hypergraphs.
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Simplicial complexes vs hypergraphs I

F. Battiston, G. Cencetti, I. Iacopini et al. / Physics Reports 874 (2020) 1–92 5

Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
interactions (B). Using only low-order blocks, the set of interactions can be described in the simplest way by using a graph (C). Alternatively,
interactions can be encoded as nodes in one layer of a bipartite graph, where the other layer contains the interaction vertices (D). Other examples
of high-order coordinated patterns can be encoded using motifs, small subgraphs with specific connectivity structures (E). Among motifs, cliques
are especially popular as they represent the densest subgraphs, akin to higher-order bricks (F). All these representations discard information that
was present in the original interaction data (A). A solution is to consider explicitly higher-order building blocks, in the form of simplices and
hyperedges (G). Collection of simplices form simplicial complexes (H), which allow to discriminate between genuine higher-order interactions and –
even complex – sums of low-order ones (I). Unfortunately, simplicial complexes, given a simplex, require the presence of all possible subsimplices
(J), which can be too strong an assumption in some systems. Relaxing this condition effectively implies moving from simplices to hyperedges (K),
which are the most general—and less constrained—representation of higher-order interactions (L).

2.1.2. Graph-based representations
Graphs are the most common way to represent families of interactions (Fig. 1C). A graph G = (V , E) is defined by

a nodeset V with n elements, and an edgeset E whose m elements are pairs of nodes. A graph is then a collection
of edges connecting pairs of nodes. In other words, the building blocks of graph representations are 1-interactions,
i.e. interactions of the type I = [i, j]. The most natural choice is then to unfold each higher-order interaction in I in terms of
1-interactions built from pairs of nodes in I . Under this assumption, our example I = {[a, b, c], [a, d], [d, c], [c, e]} maps
to IG = {[a, b], [b, c], [c, a], [a, d], [d, c], [c, e]} (Fig. 1B). This mapping makes systems amenable to be studied using tools
developed in both graph theory [45] and network science [16]. Indeed, graph representations enabled the growth, depth
and breadth of results on real-world complex networks in the last two decades [17–19], with applications spanning biology
[46,47], ecology [27,48], social science [49,50], engineering [51,52], neuroscience [53–55], all the way to cosmology [56].

Despite the power of graph representations to capture many properties of complex interacting systems, their limits are
easily identified: it is impossible to explicitly describe group interactions, or in other terms there is no direct relationship
between I and IG nor any way to recover the former from the latter. For example, going back to our toy example, at
the description level provided by IG, it is impossible to tell (and hence to describe) whether the original interaction set
contained [a, c, d] or not. Naturally, in some cases networks can provide information on higher-order interactions, but
these are always inferences based on the low-order interactions, obtained for example by looking for very dense subsets
of nodes using community [57], clique [58] or block detection [59] techniques. However, such reconstructions are often
incomplete and rife with problems [60–62].

Bipartite graph representations effectively describe group interactions. Solidly within the realms of low-order inter-
actions, bipartite graphs are graphs defined by two nodesets (U,W ) and an edgeset E containing only edges (u, w) such
that u 2 U and w 2 W . To represent higher-order interactions, one chooses U to coincide with the original nodeset
V , i.e. U = V , and W to coincide with the set of interactions I [63,64]. The links in the bipartite graph connect a node
(in V ) to the interactions (of arbitrary order) in which it takes part (Fig. 1D). This representation emerges naturally in
many fields: it is used for example in social sciences, where it provides a way to encode the membership of individuals
to groups of different dimensions [65,66]; or to describe the collaboration of actors (nodes) in movies (interactions) [67];
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Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
interactions (B). Using only low-order blocks, the set of interactions can be described in the simplest way by using a graph (C). Alternatively,
interactions can be encoded as nodes in one layer of a bipartite graph, where the other layer contains the interaction vertices (D). Other examples
of high-order coordinated patterns can be encoded using motifs, small subgraphs with specific connectivity structures (E). Among motifs, cliques
are especially popular as they represent the densest subgraphs, akin to higher-order bricks (F). All these representations discard information that
was present in the original interaction data (A). A solution is to consider explicitly higher-order building blocks, in the form of simplices and
hyperedges (G). Collection of simplices form simplicial complexes (H), which allow to discriminate between genuine higher-order interactions and –
even complex – sums of low-order ones (I). Unfortunately, simplicial complexes, given a simplex, require the presence of all possible subsimplices
(J), which can be too strong an assumption in some systems. Relaxing this condition effectively implies moving from simplices to hyperedges (K),
which are the most general—and less constrained—representation of higher-order interactions (L).
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of edges connecting pairs of nodes. In other words, the building blocks of graph representations are 1-interactions,
i.e. interactions of the type I = [i, j]. The most natural choice is then to unfold each higher-order interaction in I in terms of
1-interactions built from pairs of nodes in I . Under this assumption, our example I = {[a, b, c], [a, d], [d, c], [c, e]} maps
to IG = {[a, b], [b, c], [c, a], [a, d], [d, c], [c, e]} (Fig. 1B). This mapping makes systems amenable to be studied using tools
developed in both graph theory [45] and network science [16]. Indeed, graph representations enabled the growth, depth
and breadth of results on real-world complex networks in the last two decades [17–19], with applications spanning biology
[46,47], ecology [27,48], social science [49,50], engineering [51,52], neuroscience [53–55], all the way to cosmology [56].

Despite the power of graph representations to capture many properties of complex interacting systems, their limits are
easily identified: it is impossible to explicitly describe group interactions, or in other terms there is no direct relationship
between I and IG nor any way to recover the former from the latter. For example, going back to our toy example, at
the description level provided by IG, it is impossible to tell (and hence to describe) whether the original interaction set
contained [a, c, d] or not. Naturally, in some cases networks can provide information on higher-order interactions, but
these are always inferences based on the low-order interactions, obtained for example by looking for very dense subsets
of nodes using community [57], clique [58] or block detection [59] techniques. However, such reconstructions are often
incomplete and rife with problems [60–62].

Bipartite graph representations effectively describe group interactions. Solidly within the realms of low-order inter-
actions, bipartite graphs are graphs defined by two nodesets (U,W ) and an edgeset E containing only edges (u, w) such
that u 2 U and w 2 W . To represent higher-order interactions, one chooses U to coincide with the original nodeset
V , i.e. U = V , and W to coincide with the set of interactions I [63,64]. The links in the bipartite graph connect a node
(in V ) to the interactions (of arbitrary order) in which it takes part (Fig. 1D). This representation emerges naturally in
many fields: it is used for example in social sciences, where it provides a way to encode the membership of individuals
to groups of different dimensions [65,66]; or to describe the collaboration of actors (nodes) in movies (interactions) [67];

Simplex and Simplicial complexes
a k-simplex σ = {p0, p1, . . . , pk} is a set of k + 1 points (in a
topological space);
a subface of a simplex σ is any subset of points in σ;
a simplicial complex = a collection K = {σ1, . . . , σn} of simplexes (of
any size);
a valid simplicial complex is such that ∀σ ∈ K , every subface of σ also
belongs to K
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Simplicial complexes vs hypergraphs II

(Dis)-Advantages
, strong mathematical object, very useful in many areas; e.g:
statistical topological data analysis, to approximate varieties of
irregular algebraic structures;
/ Valid simplicial complexes impose all sub-interactions of an
interaction should exist;
/ points come with positions in (topological) space
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Simplicial complexes vs hypergraphs III

F. Battiston, G. Cencetti, I. Iacopini et al. / Physics Reports 874 (2020) 1–92 5

Fig. 1. Representations of higher-order interactions. A set of interactions of heterogeneous order (A) can be represented using only pairwise
interactions (B). Using only low-order blocks, the set of interactions can be described in the simplest way by using a graph (C). Alternatively,
interactions can be encoded as nodes in one layer of a bipartite graph, where the other layer contains the interaction vertices (D). Other examples
of high-order coordinated patterns can be encoded using motifs, small subgraphs with specific connectivity structures (E). Among motifs, cliques
are especially popular as they represent the densest subgraphs, akin to higher-order bricks (F). All these representations discard information that
was present in the original interaction data (A). A solution is to consider explicitly higher-order building blocks, in the form of simplices and
hyperedges (G). Collection of simplices form simplicial complexes (H), which allow to discriminate between genuine higher-order interactions and –
even complex – sums of low-order ones (I). Unfortunately, simplicial complexes, given a simplex, require the presence of all possible subsimplices
(J), which can be too strong an assumption in some systems. Relaxing this condition effectively implies moving from simplices to hyperedges (K),
which are the most general—and less constrained—representation of higher-order interactions (L).

2.1.2. Graph-based representations
Graphs are the most common way to represent families of interactions (Fig. 1C). A graph G = (V , E) is defined by

a nodeset V with n elements, and an edgeset E whose m elements are pairs of nodes. A graph is then a collection
of edges connecting pairs of nodes. In other words, the building blocks of graph representations are 1-interactions,
i.e. interactions of the type I = [i, j]. The most natural choice is then to unfold each higher-order interaction in I in terms of
1-interactions built from pairs of nodes in I . Under this assumption, our example I = {[a, b, c], [a, d], [d, c], [c, e]} maps
to IG = {[a, b], [b, c], [c, a], [a, d], [d, c], [c, e]} (Fig. 1B). This mapping makes systems amenable to be studied using tools
developed in both graph theory [45] and network science [16]. Indeed, graph representations enabled the growth, depth
and breadth of results on real-world complex networks in the last two decades [17–19], with applications spanning biology
[46,47], ecology [27,48], social science [49,50], engineering [51,52], neuroscience [53–55], all the way to cosmology [56].

Despite the power of graph representations to capture many properties of complex interacting systems, their limits are
easily identified: it is impossible to explicitly describe group interactions, or in other terms there is no direct relationship
between I and IG nor any way to recover the former from the latter. For example, going back to our toy example, at
the description level provided by IG, it is impossible to tell (and hence to describe) whether the original interaction set
contained [a, c, d] or not. Naturally, in some cases networks can provide information on higher-order interactions, but
these are always inferences based on the low-order interactions, obtained for example by looking for very dense subsets
of nodes using community [57], clique [58] or block detection [59] techniques. However, such reconstructions are often
incomplete and rife with problems [60–62].

Bipartite graph representations effectively describe group interactions. Solidly within the realms of low-order inter-
actions, bipartite graphs are graphs defined by two nodesets (U,W ) and an edgeset E containing only edges (u, w) such
that u 2 U and w 2 W . To represent higher-order interactions, one chooses U to coincide with the original nodeset
V , i.e. U = V , and W to coincide with the set of interactions I [63,64]. The links in the bipartite graph connect a node
(in V ) to the interactions (of arbitrary order) in which it takes part (Fig. 1D). This representation emerges naturally in
many fields: it is used for example in social sciences, where it provides a way to encode the membership of individuals
to groups of different dimensions [65,66]; or to describe the collaboration of actors (nodes) in movies (interactions) [67];

Definition
A hypergraph H = (V, E) is defined as a set of nodes V ≠ ∅ and a set of
hyperedges E . Each hyperedge is a non-empty collection of k distinct
nodes taking part in an interaction.
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Simplicial complexes vs hypergraphs IV

Hypergraphs characteristics
Hypergraphs naturally include the entity of graphs, by simply
considering hyperedges of size k = 2;
A hypergraph may contain a size-3 hyperedge {a, b, c} without any
requirement on the existence of the size-2 hyperedges {a, b}, {a, c},
and {b, c}.
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Simplicial complexes vs hypergraphs V

Simple hypergraphs and variants
In simple hypergraphs, an hyperedge appears only once and contains
distinct nodes;
May consider nodes to appear with multiplicities in a same
hyperedge

▶ Example: chemical reactions, multiplicity = stoichiometric coefficient;
▶ I call these multisets hypergraphs;
▶ generalize (in some sense) the notion of loops in graphs

May consider multiple hyperedges, when a same hyperedge may
appear several times (= integer-valued weight on a hyperedge);
May introduce a direction: a hyperedge e is divided into 2 ordered
subsets (e1, e2) of interacting nodes (e = e1 ∪ e2);
↪→ not much used though;

NB : in the following, focus on hypergraphs.
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Matrix encoding of hypergraphs

Incidence matrix H, size n ×m where n nb of nodes, m nb of
interactions; with entry Hi ,e = 1 when node i belongs to hyperedge e.
↪→ contains all the information;
↪→ enables definition of node degrees di (=rowSums of H) and
hyperedge sizes/degrees δe (=colSums of H)
Adjacency matrix A = HH⊺ − D has size n × n, where
D = diag(d1, . . . , dn)
↪→ This is the adjacency matrix of the clique expansion graph;
↪→ contains only partial information;
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Statistical measures on hypergraphs

Graph statistics generalized to hypergraphs
For any size k ≥ 2, size-k density is = nb of size-k hyperedges /

(n
k

)
Node degree; hyperedge size/degree;
Centrality measures

▶ relies on the notion of paths;
▶ a path is a sequence (e1, e2, . . . , et) of hyperedges such that 2

successive hyperedges have at least one common node (ei ∩ ei+1 ̸= ∅);
▶ concept of k-path: any 2 successive hyperedges share at least k ≥ 1

nodes;

Graph statistics with no natural generalization
clustering and transitivity (based on triangles);
motifs (combinatorial complexity)
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Clustering the nodes of a hypergraph I

Objective

Community detection on hypergraphs Node clustering in a hypergraph

Objective: node clustering in a hypergraph

=)

Identify clusters/communities through modularity-based approaches
�! large intra-group and low inter-groups connection probabilities

Veronica Poda Comparing modularity-based approaches for community detection on hypergraphs October 20, 2023 4 / 20

Questions: What are we looking for? Can we define communities?
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Clustering the nodes of a hypergraph II

In a graph, a community is a set of nodes with large within-group
connections and small between-groups connections.

In a hypergraph, should we weight the hyperedges wrt their sizes?
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Methods for node clustering I

3 types of methods
1 Modularity-based approaches

▶ Different hypergraph modularity definitions: what kind of communities
do they favour?

▶ Note that for computational reasons, these focus on
multisets-hypergraphs where nodes may be repeated in a same
hyperedge;

▶ This is not always appropriate, e.g. co-authorship dataset;
▶ In the context of graphs, absence of self-loops and multiple edges are

known to generate pbms in modularity approaches
2 Spectral clustering has been generalized to hypergraphs but

▶ it tends to favour groups of the same size;
3 Stochastic Blockmodels
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Methods for node clustering II

Challenges
Look for general clusters and not only communities
Methods should come with a procedure to select the number of groups
K
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Modularity-based approaches I

Newman-Girvan modularity for graphs
For a clustering C = (C1, . . . ,CK ) of the nodes of a graph G = (V ,E ), we
let

Q(G , C) = 1
2|E |

K∑
k=1

∑
u,v∈Ck

(
Auv −

dudv
2|E |

)
.

exact optimization is impossible; rely on Louvain algorithm (heuristic);
compares the nb of within-cluster edges with expected value under a
null model accounting for nodes degrees;
automatically selects a number of clusters
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Modularity-based approaches II

Hypergraph case
Many different generalizations exist for hypergraphs, based on
different notions of communities
We have compared methods in Poda & Matias (2024) and found that
the best is Chodrow et al., 2021
It focuses on All-or-Nothing (AON) modularity, in which a hyperedge
contributes to increase modularity only when all its nodes are in the
same cluster.

Matias C. HOI and node clustering RMR 2024 26 / 46



Spectral hypergraph partitioning I

Graphs case - intuition
When there are communities, adjacency matrix is structured as almost
block diagonal;
A Laplacian of the graph is a normalised version of the adjacency
matrix
The eigendecomposition of the adjacency matrix or of a Laplacian
should reveal the communities
This is linked to embedding: the nodes are sent to a new vector space
(corresponding to the principal eigenvector), where proximity is
correlated with connection in the graph
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Spectral hypergraph partitioning II

Hypergraphs case
See for e.g. Ghoshdastidar & Dukkipati (2014,2017)

Hypergraph Laplacian L = I − D−1/2H∆−1H⊺D−1/2

Compute leading eigenvectors and run k-means on rows
No proposal to select for the number of groups (is there an eigengap?)
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Why should you prefer stochastic blockmodels?

Apart from the fact that statistics are always the best option ;)

Critics
Both methods look for communities and not general clusters (e.g.
hubs or peripherical nodes);
Both tend to favour groups of the same size;
For computational reasons, modularity approaches have focused on
multisets-hypergraphs (where nodes may be repeated in a same
hyperedge);
↪→ assumption not always appropriate, e.g. co-authorship dataset;
↪→ with which impact?
Modularity maximization is difficult; only local maximum is found;
None of these methods comes with a statistical criterion to select the
number of groups.
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Hypergraphs Stochastic Blockmodels

Our SBM proposal (joint work with Luca Brusa)
We focus on simple graphs (instead of multisets-hypergraphs);
We define a stochastic blockmodel to cluster the nodes of a
hypergraph

▶ We establish parameter identifiability results;
▶ We propose a variational expectation-maximisation algorithm to

infer clusters and parameters;
▶ We propose an ICL criterion to select the number of clusters;
▶ All these tools are implemented (in C++) in a efficient R package called

HyperSBM (https://github.com/LB1304/HyperSBM).
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Stochastic block model (binary graphs)
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γ••

9

10

γ••

γ••

γ••

γ••

n = 10,Z5• = 1
A12 = 1,A15 = 0

Binary case (parametric model with θ = (π,γ))
K groups (=colors •••).
{Zi}1≤i≤n i.i.d. vectors Zi = (Zi1, . . . ,ZiK ) ∼ M(1,π), with
π = (π1, . . . , πK ) groups proportions. Zi not observed (latent).
Observations: presence/absence of an edge {Aij}1≤i<j≤n,
Conditional on {Zi}’s, the r.v. Aij are independent B(γZiZj

).
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HyperSBM formulation

Community detection on hypergraphs Node clustering in a hypergraph

Objective: node clustering in a hypergraph

=)

Identify clusters/communities through modularity-based approaches
�! large intra-group and low inter-groups connection probabilities

Veronica Poda Comparing modularity-based approaches for community detection on hypergraphs October 20, 2023 4 / 20

H = (V, E),
For each 2 ≤ m ≤ M, let
V(m) =

{
{i1, . . . , im} :

i1, . . . , im ∈ V and i1 ̸= . . . ̸=
im
}
, set of unordered node

tuples of size m;

Observations: At each {i1, . . . , im} ∈ V(m), we observe indicator
variable Yi1,...,im = 1{{i1, . . . , im} ∈ E};

Latent clusters: Z1, . . . ,Zn iid in {1, . . . ,Q} with πq = P(Zi = q);

Conditional independence assumption:
{Yi1,...,im}{i1,...,im}∈V(m) |{Z1, . . . ,Zn} are independent with

Yi1,...,im |{Z1 = q1, . . . ,Zm = qm} ∼ Bern(B(m)
qi1 ,...,qim

).
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Line clustering through hypergraphs I

2 experiments: 2 lines (3 groups) and 3 lines (4 groups)

2 Lines 3 Lines
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Line clustering through hypergraphs II

Hypergraph construction
Select 3 points at random and fit a line
If residual distance is less than a threshold, draw a hyperedge between
those 3 points
Globally set signal:noise hyperedge ratio = 2
Repeat to obtain 100 3-uniform hypergraphs

Data characteristics
Pts/line Noisy pts Total nb pts mean nb of hyperedges

2 lines 30 40 100 1070.84
3 lines 30 60 150 587.7
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Comparison with modularity based methods I

2 Lines 3 Lines
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Comparison with modularity based methods II

2 Lines 3 Lines
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Co-authorship dataset I

Dataset description
Available at http://vlado.fmf.uni-lj.si/pub/networks/data/
2mode/Sandi/Sandi.htm

Bipartite author/article graph transformed into hypergraph of authors
where hyperedges link the authors of a same paper;
We choose M = 4 and consider the induced largest connected
component: 79 authors and 76 hyperedges (68.5% of which have size
2, while 29% have size 3 and 2.5% have size 4).
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Co-authorship dataset II

Analysis through HyperSBM
ICL selects Q = 2 groups, the first has only 8 authors;
Our first group is made of authors (among) the most collaborative
ones, which are also (among) the most prolific ones.
None of these groups is a community (the first co-publishes with all,
the second has low intra-group connectivity).

Comparison with hypergraph spectral clustering (HSC)
HSC with Q = 2 gives a group of size 24 and one of size 55
These groups are neither characterized by the number of co-authors
nor their degrees in the bipartite graph
Very different from our results because: spectral clustering tends to: i)
extract communities ; ii) favor groups of similar size.
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Conclusions

Higher-order interactions is the new trend;
There are already some available tools that you can test on your
datasets;

▶ ↪→ do you have such datasets?

New progresses can only be obtained if you first formulate new
ecological questions that can be analyzed with HOIs data

Any questions ?
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Non equivalence between simple binary hypergraphs and
bipartite graphs

Bipartite graphs space Hypergraphs space

a b c

(a)

a b c

(b)

a b c

(c)

a b c
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