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@ The need for higher-order interactions
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Higher-order interactions |

Motivations
@ Networks or graphs focus on pairwise interactions

@ These type of pairwise interactions can already be quite elaborate:
undirected/directed, binary/weighted, simple/multiple,
static/dynamic, multiplex or multi-layers, . ..

@ Nonetheless pairwise interactions are not sufficient to describe the
nature of complex interactions :

e.g. the presence of a 3rd species may modify the interaction of 2 other
species ;

e.g. a collaboration between 3 authors is stg different from 3 pairwise
collaborations between these same authors ;

o Collective interactions or group interactions are richer than just
pairwise interactions

< These are called higher-order interactions (HOI).
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Higher-order interactions ||

Where do we find HOI?
@ Social networks: triadic and larger groups (as early as Simmel, 1950)
@ Scientific co-authorship,

Interactions between more than two species in ecological systems,
HOI between neurons in brain networks,

Metabolites in chemical reactions,

etc

These interactions CAN NOT be represented by a graph.
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Higher-order interactions |lI

This is a nice recent review (2020):

Contents lists available at ScienceDirect

Physics Reports

ELSEVIER journal homepage: www.elsevier.com/locate/physrep

Networks beyond pairwise interactions: Structure and
dynamics

Federico Battiston ", Giulia Cencetti®, lacopo lacopini “, Vito Latora “*¢,
Maxime Lucas ™', Alice Patania ¥, Jean-Gabriel Young', Giovanni Petri ™"
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Pairwise vs HOI

HOI are defined as sets of interacting entities.

eg. V={ab,c,de};T={{ab,c} {ad},{c,d} {c e}}

(a) Pairwise interactions

(b) A HOIl in blue
The order of an interaction is the number of entities that interact - 1.
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© Capturing higher-order interactions
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Naive Graph representation: clique expansion graph
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Picture from Schaub et al. 2021

@ Each interaction is transformed into a clique = all edges between pairs

are present ;
@ HOIs actually disappeared !

@ Too simplistic: For e.g, in co-authorship 1 paper with 3 authors # 3

different papers written by pairs of those authors.

Matias C. HOI and node clustering RMR 2024

8/46



Bipartite graph representation (two-modes network or
star-expansion graph)

A
A @ No loss of information for
6'@ hypergraphs with multiples
hyperedges and self-loops;
W @ But "higher-order" now
D translates into node degrees

in one part;

€1 €2 €3
@ 2 two parts don't play
/ \W \ symmetric roles: statistical
U1 V2 U3 V4 Us Vs models on bipartite graphs
are not appropriate here

Picture from Schaub et al. 2021
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Other graph representations

@ There are other graph-representations of HOls
@ But none of it may completely capture these

< There are 2 mathematical objects to represent HOIs : Simplicial
complexes and hypergraphs.
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Simplicial complexes vs hypergraphs |

SIMPLICIAL
COMPLEX
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1-simplex 2-simplex 3-simplex |

Simplex and Simplicial complexes

@ a k-simplex o = {po, p1,--., Pk} is a set of k + 1 points (in a
topological space);

@ a subface of a simplex o is any subset of points in o;

@ a simplicial complex = a collection K = {o1,...,0,} of simplexes (of
any size);

@ a valid simplicial complex is such that Vo € K, every subface of o also
belongs to K
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Simplicial complexes vs hypergraphs |l

(Dis)-Advantages
@ © strong mathematical object, very useful in many areas; e.g:
statistical topological data analysis, to approximate varieties of
irregular algebraic structures;

@ @ Valid simplicial complexes impose all sub-interactions of an
interaction should exist;

@ © points come with positions in (topological) space
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Simplicial complexes vs hypergraphs Il

HYPERGRAPH
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Definition

A hypergraph H = (V, ) is defined as a set of nodes V # () and a set of
hyperedges £. Each hyperedge is a non-empty collection of k distinct

nodes taking part in an interaction.
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Simplicial complexes vs hypergraphs IV

Hypergraphs characteristics
@ Hypergraphs naturally include the entity of graphs, by simply
considering hyperedges of size k = 2;
@ A hypergraph may contain a size-3 hyperedge {a, b, ¢} without any
requirement on the existence of the size-2 hyperedges {a, b}, {a,c},
and {b,c}.
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Simplicial complexes vs hypergraphs V

Simple hypergraphs and variants

@ In simple hypergraphs, an hyperedge appears only once and contains
distinct nodes;
@ May consider nodes to appear with multiplicities in a same
hyperedge
Example: chemical reactions, multiplicity = stoichiometric coefficient;
| call these multisets hypergraphs;
generalize (in some sense) the notion of loops in graphs
@ May consider multiple hyperedges, when a same hyperedge may
appear several times (= integer-valued weight on a hyperedge);

@ May introduce a direction: a hyperedge e is divided into 2 ordered
subsets (e1, e2) of interacting nodes (e = e; U e2);
< not much used though;

NB : in the following, focus on hypergraphs.
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Matrix encoding of hypergraphs

@ Incidence matrix H, size n x m where n nb of nodes, m nb of
interactions; with entry H; . = 1 when node i belongs to hyperedge e.
< contains all the information;

— enables definition of node degrees d; (=rowSums of H) and
hyperedge sizes/degrees . (=colSums of H)

@ Adjacency matrix A = HHT — D has size n x n, where
D = diag(d,...,dp)
— This is the adjacency matrix of the clique expansion graph;
< contains only partial information;
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© Statistics on hypergraphs
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Statistical measures on hypergraphs

Graph statistics generalized to hypergraphs
@ For any size k > 2, size-k density is = nb of size-k hyperedges /(Z)

o Node degree; hyperedge size/degree;
o Centrality measures

relies on the notion of paths;

a path is a sequence (e, e, ..., ) of hyperedges such that 2
successive hyperedges have at least one common node (e; N ej11 # 0);
concept of k-path: any 2 successive hyperedges share at least kK > 1

nodes;
v

Graph statistics with no natural generalization
o clustering and transitivity (based on triangles);

e motifs (combinatorial complexity)
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@ Clustering entities in hypergraphs
@ Different approaches
@ Stochastic blockmodel for hypergraphs

Matias C. HOI and node clustering RMR 2024 19 / 46



Outline

© The need for higher-order interactions
© Capturing higher-order interactions
© Statistics on hypergraphs
@ Clustering entities in hypergraphs

@ Different approaches
© Experiments

@ Conclusions

Matias C. HOI and node clustering RMR 2024 20 /46



Clustering the nodes of a hypergraph |

Objective

Questions: What are we looking for? Can we define communities?
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Clustering the nodes of a hypergraph Il

In a graph, a community is a set of nodes with large within-group
connections and small between-groups connections.

g

In a hypergraph, should we weight the hyperedges wrt their sizes?
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Methods for node clustering |

3 types of methods

@ Modularity-based approaches
Different hypergraph modularity definitions: what kind of communities
do they favour?
Note that for computational reasons, these focus on
multisets-hypergraphs where nodes may be repeated in a same
hyperedge;
This is not always appropriate, e.g. co-authorship dataset;
In the context of graphs, absence of self-loops and multiple edges are
known to generate pbms in modularity approaches

@ Spectral clustering has been generalized to hypergraphs but
it tends to favour groups of the same size;

© Stochastic Blockmodels
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Methods for node clustering Il

Challenges
@ Look for general clusters and not only communities

@ Methods should come with a procedure to select the number of groups
K
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Modularity-based approaches |

Newman-Girvan modularity for graphs

For a clustering C = (Cy,. .., Ck) of the nodes of a graph G = (V,E), we

let
K
1 d,d,
Q(G,C) = mz Z (Auv_ 2|E|> .

k=1 u,veCy

@ exact optimization is impossible; rely on Louvain algorithm (heuristic);

@ compares the nb of within-cluster edges with expected value under a
null model accounting for nodes degrees;

@ automatically selects a number of clusters
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Modularity-based approaches Il

Hypergraph case

e Many different generalizations exist for hypergraphs, based on
different notions of communities

@ We have compared methods in Poda & Matias (2024) and found that
the best is Chodrow et al., 2021

o It focuses on All-or-Nothing (AON) modularity, in which a hyperedge
contributes to increase modularity only when all its nodes are in the
same cluster. )
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Spectral hypergraph partitioning |

Graphs case - intuition

@ When there are communities, adjacency matrix is structured as almost
block diagonal;

@ A Laplacian of the graph is a normalised version of the adjacency
matrix

@ The eigendecomposition of the adjacency matrix or of a Laplacian
should reveal the communities

@ This is linked to embedding: the nodes are sent to a new vector space
(corresponding to the principal eigenvector), where proximity is
correlated with connection in the graph
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Spectral hypergraph partitioning ||

Hypergraphs case
See for e.g. Ghoshdastidar & Dukkipati (2014,2017)
o Hypergraph Laplacian L = | — D"Y2HA-1HTD-1/2

@ Compute leading eigenvectors and run k-means on rows

@ No proposal to select for the number of groups (is there an eigengap?)

o
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Why should you prefer stochastic blockmodels?

Apart from the fact that statistics are always the best option ;)

Critics

@ Both methods look for communities and not general clusters (e.g.
hubs or peripherical nodes);

@ Both tend to favour groups of the same size;

@ For computational reasons, modularity approaches have focused on
multisets-hypergraphs (where nodes may be repeated in a same
hyperedge);
< assumption not always appropriate, e.g. co-authorship dataset;
— with which impact?

@ Modularity maximization is difficult; only local maximum is found;

@ None of these methods comes with a statistical criterion to select the
number of groups.
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Hypergraphs Stochastic Blockmodels

Our SBM proposal (joint work with Luca Brusa)

@ We focus on simple graphs (instead of multisets-hypergraphs);

@ We define a stochastic blockmodel to cluster the nodes of a
hypergraph

We establish parameter identifiability results;
We propose a variational expectation-maximisation algorithm to
infer clusters and parameters;
We propose an ICL criterion to select the number of clusters;
All these tools are implemented (in C++) in a efficient R package called
HyperSBM (https://github.com/LB1304/HyperSBM).

v
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https://github.com/LB1304/HyperSBM
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Stochastic block model (binary graphs)

/\ %.
n=10,Zse = 1
A =1A15=0
\\%—/

0

Binary case (parametric model with 6 = (7, 7))

@ K groups (=colors - ee).

o {Zi}lgign i.i.d. vectors Z; = (Z,'l, 000y Z,’K) ~ M(l,ﬂ'), with
= (m1,...,7K) groups proportions. Z; not observed (latent).

@ Observations: presence/absence of an edge {Aj}1<i<j<n,

o Conditional on {Z;}'s, the r.v. Aj are independent B(vzz).
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HyperSBM formulation

o H=(VE),

@ Foreach2 < m< M, let
V) = Ly, i)
il,...,imEVand i1 7&7&
im}, set of unordered node
tuples of size m;

e Observations: At each {i1,...,im} € V(M) we observe indicator
variable Yj, ;i =1{{i,...,im} €E};

o Latent clusters: Zy,...,Z,iid in {1,..., Q} with 7y = P(Z; = q);

o Conditional independence assumption:
{Yi1,...,im}{ih...,im}ev(m)|{Zla ..., Zp} are independent with

Yiim{Z1 =01, ., Zm = qm} ~ Bern(Bc(,,-rl",)...,q,-m).
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Line clustering through hypergraphs |

2 experiments: 2 lines (3 groups) and 3 lines (4 groups)

2 Lines 3 Lines

0.50 | @, X 0.50{ @, X X

Wy_ x X \‘X X % X %
0.25 %@ Xl | o) XXX X %

X ‘% B x X % X

X X
0.00 X X | 00| XK Qo L
XA A
X TV o X X ok
-0.25 X -0.25
{7l T TR 2
X X X % X X )‘
-0.50 | X R/ 050 X
-0.50 -0.25 0.00 0.25 0.50 -0.50 -0.25 0.00 0.25 0.50
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Line clustering through hypergraphs Il

Hypergraph construction
@ Select 3 points at random and fit a line

o If residual distance is less than a threshold, draw a hyperedge between
those 3 points

@ Globally set signal:noise hyperedge ratio = 2
@ Repeat to obtain 100 3-uniform hypergraphs

Data characteristics

‘ Pts/line Noisy pts Total nb pts mean nb of hyperedges
2 lines 30 40 100 1070.84
3 lines 30 60 150 587.7
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Comparison with modularity based methods |

ARI
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Comparison with modularity based methods Il

2 Lines 3 Lines
1001 1001 Algorithm
O mypersny
Chodrow AON
75 75 I Chodrow Symm
Kaminski
]
g 50 50
O
25 - 25
Alaldas ... Latltkwdiss,...
2 3 4 5 6 7 8 9 10 45678 91011121314151617181921
Q

Estimated number of groups
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Co-authorship dataset |

Dataset description
@ Available at http://vlado.fmf.uni-1j.si/pub/networks/data/
2mode/Sandi/Sandi.htm
@ Bipartite author/article graph transformed into hypergraph of authors
where hyperedges link the authors of a same paper;

@ We choose M = 4 and consider the induced largest connected
component: 79 authors and 76 hyperedges (68.5% of which have size
2, while 29% have size 3 and 2.5% have size 4).
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Co-authorship dataset |l

Analysis through HyperSBM
o ICL selects @ = 2 groups, the first has only 8 authors;
@ Our first group is made of authors (among) the most collaborative
ones, which are also (among) the most prolific ones.
@ None of these groups is a community (the first co-publishes with all,
the second has low intra-group connectivity).

Comparison with hypergraph spectral clustering (HSC)
@ HSC with @ = 2 gives a group of size 24 and one of size 55
@ These groups are neither characterized by the number of co-authors
nor their degrees in the bipartite graph

@ Very different from our results because: spectral clustering tends to: i)
extract communities ; ii) favor groups of similar size.

v
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Conclusions

@ Higher-order interactions is the new trend;

@ There are already some available tools that you can test on your
datasets;
» < do you have such datasets?

@ New progresses can only be obtained if you first formulate new
ecological questions that can be analyzed with HOIs data

Any questions 7
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Non equivalence between simple binary hypergraphs and
bipartite graphs

Bipartite graphs space

Hypergraphs space
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