Functional convex ordering for stochastic processes: a constructive and simulable approach

Gilles Pagès (includes collaborations with B. Jourdain, Y. Liu & C. Yeo)

I PSM-Sorbonne-Université

Rencontres Mathématiques de Rouen

Rouen 20 juin 2024

Definitions

Definition (Convex order, peacock)

(a) Two \mathbb{R}^d -valued random vectors $U,\ V\in L^1(\mathbb{P})$ are ordered w.r.t. convex order, denoted

$$U \leq_{cvx} V$$

if, for every $\varphi:\mathbb{R}^d o \mathbb{R}$, convex, [φ Lipschitz is enough (Jourdain-P. 2023) by an inf convolution argument],

$$\mathbb{E}\,\varphi(U) \leq \mathbb{E}\,\varphi(V) \in (-\infty, +\infty].$$

(b) A stochastic process $(X_u)_{u\geq 0}$ is a p.c.o.c. (for "processus croissant pour l'ordre convexe") if

 $u \longmapsto X_u$ is non-decreasing for the convex order.

• Then $\mathbb{E} U = \mathbb{E} V [\varphi(x) = \pm x_i, i = 1 : d]$, and, if both lie in $L^2 [\varphi(x) = |x|^2]$,

$$Var(U) \leq Var(V)$$
.

where $Var(U) = \mathbb{E} |U - \mathbb{E} U|^2$.

Examples and motivation

• If $(X_t)_{t\geq 0}$ is a martingale, then $(X_t)_{t\geq 0}$ is a p.c.o.c./peacock: let $0\leq s\leq t$, $\mathbb{E}\,\varphi(X_s)=\mathbb{E}\,\big(\varphi(\mathbb{E}(X_t|X_s))\big)\underbrace{\qquad}_{\leq}\mathbb{E}\,\big(\mathbb{E}(\varphi(X_t)|X_s)\big)=\mathbb{E}\,\varphi(X_t).$

• Example: Gaussian distributions (centered): Let $Z \sim \mathcal{N}(0, I_q)$ on \mathbb{R}^q and let $A, B \in \mathbb{M}(d, q)$ be $d \times q$ matrices

lensen

$$(A \leq B \text{ i.e. } BB^* - AA^* \in S^+(d)) \iff AZ \leq_{cvx} BZ$$

i.e. $\mathcal{N}(0,AA^*) \leq_{cvx} \mathcal{N}(0,BB^*)$ [Still true if **Z** is radial: $Z \sim OZ$, $\forall O \in O(d)$, Jourdain-P. 2022].

ullet Proof: Let $Z_1, Z_2 \sim \mathcal{N}(0; I_q)$ be independent and set

$$X_1 = AZ_1, \quad X_2 = X_1 + (BB^* - AA^*)^{1/2}Z_2.$$

Then (X_1, X_2) is an \mathbb{R}^d -valued martingale and $X_2 \sim \mathcal{N}(0, BB^*)$.

- Scalar case d = q = 1: $|\sigma| \le |\vartheta| \iff \mathcal{N}(0, \sigma^2) \preceq_{cvx} \mathcal{N}(0, \vartheta^2)$.
- 1D-proof: $\varphi: \mathbb{R} \to \mathbb{R}$ convex and $Z \in L^1$. Then, by Jensen's \leq , $u \mapsto \mathbb{E} \, \varphi(uZ)$ is convex and attains its minimum $\varphi(0)$ at u = 0.

Hence $u\mapsto \mathbb{E}\,\varphi(uZ)$ is non-decreasing on \mathbb{R}_+ and non-increasing on \mathbb{R}_- .

About the converse of "martingale \Rightarrow p.c.o.c."

• Strassen's Theorem (1965): $\mu \leq_{cvx} \nu \iff \exists$ transition P(x, dy) s.t.

$$u = \mu P \quad \text{and} \quad \forall x \in \mathbb{R}^d, \quad \int y P(x, dy) = x.$$

• Kellerer's Theorem (1972): X is a p.c.o.c \iff

there exists a martingale $(M_t)_{t\geq 0}$ such that $X_t\stackrel{d}{=} M_t,\ t\geq 0,$

- i.e. X is a "1-martingale".
- Both proofs are unfortunately non-constructive.
- In Hirsch, Roynette, Profeta & Yor's monography, many (many...) explicit "representations" of p.c.o.c. by true martingales.

Representation of a p.c.o.c.

A revival motivated by Finance...

• A starter! t being fixed, $\sigma \mapsto e^{\sigma W_t - \frac{\sigma^2 t}{2}}$ is a p.c.o.c. since

$$\forall\,\sigma>0,\quad \mathrm{e}^{\sigma W_t-\frac{\sigma^2 t}{2}}\stackrel{d}{=}\mathrm{e}^{W_{\sigma^2 t}-\frac{\sigma^2 t}{2}}\;(\to\sigma\text{-martingale}).$$

• Application to Black-Scholes model $S_t^{\sigma}=s_0e^{\sigma W_t-\frac{\sigma^2t}{2}}$. For every convex payoff function $\varphi:\mathbb{R}_+\to\mathbb{R}_+$

$$0 \le \sigma \le \sigma' \Longrightarrow \mathbb{E}\,\varphi(S_t^{\sigma}) \le \mathbb{E}\,\varphi(S_t^{\sigma'}).$$

- Vanilla options: Call and Put options: $\varphi(S_{\tau}) = (S_{\tau} K)^+$, $\varphi(S_{\tau}) = (K S_{\tau})^+$, etc.
- ullet Path-dependent options (Asian payoffs). Let $\varphi:\mathbb{R}_+ o \mathbb{R}_+$ convex

$$\sigma \longmapsto \operatorname{Premium}(\sigma) = \mathbb{E}\left[\varphi\left(\frac{1}{T}\int_0^T \underbrace{s_0 e^{\sigma W_t - \frac{\sigma^2 t}{2}}}_{=S_{\sigma}^{\sigma}} dt\right)\right] ?$$

- P. Carr et al. (2008): Non-decreasing in σ when $\varphi(x) = (x K)^+$ (Asian Call) using PDEs.
- Baker-Yor (2010):

$$\sigma \mapsto \frac{1}{T} \int_0^T s_0 e^{\sigma W_t - \frac{\sigma^2 t}{2}} dt = \int_0^1 s_0 e^{W_{u\sigma^2 T} - \frac{u\sigma^2 T}{2}} du \stackrel{d}{=} \int_0^1 s_0 e^{W_{u,\sigma T} - \frac{u\sigma^2 T}{2}} du$$

where $(W_{u,t})_{u,t\geq 0}$ is a standard Brownian sheet (1). Hence a p.c.o.c. since

$$t\mapsto \int_0^1 s_0 e^{W_{u,t}-\frac{ut}{2}}du$$
 is an $(\mathcal{F}_{1,t})_{t\geq 0}$ -martingale.

with
$$\mathcal{F}_{1,t} = \sigma(W_{u,s}, 0 \le u \le 1, 0 \le s \le t)$$
.

• Yields bounds on the option prices.

 $^{{}^{1}\}mathbb{E} W_{u,t}W_{v,s}=(u\wedge v)(t\wedge s).$

- ▶ This suggests many other (new or not so new) questions!
 - Monotone (non-decreasing) convex order : \exists drif b! [Hajek, 1985].
 - Functional convex order I: switch from BS to local volatility models $i.e \ \sigma \leadsto \sigma(x): \ \sigma \mapsto \mathbb{E} \ f(X_T^{(\sigma)})$ [see e.g. El Karoui-Jeanblanc-Schreve, 1998].
 - m-marginal path-dependent convex order: e.g. $\mathbb{E} f(X_{T_1}^{(\sigma)}, X_{T_2}^{(\sigma)})$ if m=2. [see e.g.Brown, Rogers, Hobson 2001, Rüschendorf et al. 2008]
 - Functional convex order II: from $\mathbb{E} f(X_T^{(\sigma)})$ to $\mathbb{E} F(X^{(\sigma)})$ i.e. path-dependent convex order [P.2016].
 - Bermuda options [Pham 2005, Rüschendorf 2008], American options [P. 2016].
 - Jump (risky asset) dynamics for $(X_t^{(\sigma)})$? [Rüschendorf-Bergenthum 2007, P. 2016]
 - P.c.o.c. trough Martingale Optimal Transport. [Beigelbock, Henry-Labordère et al., 2013, Tan et al. 2015, Jourdain-P. 2022].

Aims and methods

- Unify and generalize these results with of focus on functional aspects (path-dependent payoffs) (like Asian options) i.e. both functional convex order I and II. With a...
- Constraint: provide a constructive method of proof
 - based on time discretization of continuous time martingale dynamics (risky assets in Finance) .
 - using numerical schemes that preserve the functional convex order satisfied by the process under consideration. . .
 - e.g. to avoid "convexity arbitrages" in Finance.
- Formulate a paradigm and apply it to various frameworks:
 - American style options, jump diffusions, stochastic integrals [P.2016, Sé. Prob.],
 - Stochastic Control and applications to swing options [P.-Yeo 2016],
 - McKean-Vlasov diffusions, MFG [Liu-P. 2022, SPA] and [Liu-P. 2023, AAP],
 - Volterra equations and rough volatility [Jourdain-P. Fin. & Stoch., to appear 2024],
 - Branching processes, Forward utilities, *G*-expectation ? Etc.

Example III: risk measure

- Let $X \in L^1\mathbb{P}$ be representative of a loss (with no atom for convenience) with c.d.f F_X .
- Let $\alpha \in (0,1]$, $\alpha \simeq 1$ be a risk level. Then

$$\operatorname{VaR}_{\alpha}(X) := (F_X)^{-1}(\alpha)$$
 and $\operatorname{CVaR}_{\alpha}(X) := \mathbb{E}(X \mid X \ge \operatorname{Var}_{\alpha}(X))$

Rockafeller-Uryasev's representation of these two risk measures

$$L_{\alpha,X}(\xi) = \xi + \frac{1}{1-\alpha} \mathbb{E}(X-\xi)^+$$

satisfies $\partial_{\xi} L_{\alpha,X}(\xi) = 1 - \frac{1}{1-\alpha} \mathbb{P}(X \geq \xi)$.

$$\operatorname{VaR}_{\alpha}(X) = \operatorname{argmin}_{\mathbb{R}} L_{\alpha,X} \quad \text{ and } \quad \operatorname{CVaR}_{\alpha}(X) = \min_{\mathbb{R}} L_{\alpha,X}.$$

As a consequence

$$X \leq_{i \in V} Y \Longrightarrow L_{\alpha, X} \leq L_{\alpha, Y}$$

so that

$$\mathrm{CVaR}_{\alpha}(X) \leq \mathrm{CVaR}_{\alpha}(Y).$$

WARNING! Not true for the value-at-risk.

Martingale (and scaled) Brownian diffusions

• Pre-order \leq on $\mathcal{M}(d, q, \mathbb{R})$: let $A, B \in \mathbb{M}_{d,q}$.

$$A \leq B$$
 if $BB^* - AA^* \in S^+(d, \mathbb{R})$.

$$ightharpoonup$$
 If $d=q=1$, $a \leq b$ iff $a^2 \leq b^2$ iff $|a| \leq |b|$

• \leq -Convexity: $\sigma: \mathbb{R}^d \to \mathbb{M}_{d,q}$ is \leq -convex if

$$\forall x, y \in \mathbb{R}^d$$
, $\lambda \in [0, 1]$, there exists $O_{\lambda, x}$, $O_{\lambda, y} \in O(q)$ such that
$$\sigma(\lambda x + (1 - \lambda)y) \preceq \lambda \sigma(x)O_{\lambda, y} + (1 - \lambda)\sigma(y)O_{\lambda, y}$$

i.e.

$$\sigma\sigma^*\big(\lambda x + (1-\lambda)y\big) \leq \big(\lambda\sigma(x)O_{\lambda,x} + (1-\lambda)\sigma(y)O_{\lambda,y}\big)\big(\lambda\sigma(x)O_{\lambda,x} + (1-\lambda)\sigma(y)O_{\lambda,y}\big)^*$$

Criterion.

$$\sigma\sigma^*(\lambda x + (1-\lambda)y) \le (\lambda\sqrt{\sigma\sigma^*}(x) + (1-\lambda)\sqrt{\sigma\sigma^*}(y))(\lambda\sqrt{\sigma\sigma^*}(x) + (1-\lambda)\sqrt{\sigma\sigma^*}(y))^*$$

- d = q = 1: $|\sigma|$ convex (with $O_{\lambda,x} = \text{sign}(\sigma(x))$).
- $d, q \ge 2$: $\sigma(x) = A \operatorname{Diag}(\lambda_{1:q}(x)) O, A \in \mathbb{M}_{d,q}, O \in O(q)$ with $|\lambda_i|, i = 1, \dots, q$, convex.

Theorem (martingale case (weak), P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

$$\begin{array}{ll} \operatorname{Let} \sigma, \theta \in \mathcal{C}_{\operatorname{lin}_x} \big([0,T] \times \mathbb{R}, \mathbb{M}_{d,q} \big). \\ dX_t^{(\sigma)} &= \sigma(t, X_t^{(\sigma)}) dW_t^{(\sigma)}, \ X_0^{(\sigma)} \in L^{1+\eta}, \ \eta > 0 \\ dX_t^{(\theta)} &= \theta(t, X_t^{(\theta)}) dW_t^{(\theta)}, \ X_0^{(\theta)} \in L^{1+\eta}, \quad \text{both } (W_t^{(\cdot)})_{t \in [0,T]} \text{ standard B.M.} \\ \text{(a) If } X_0^{(\sigma)} \prec_{\operatorname{CVX}} X_0^{(\theta)} \text{ and} \end{array}$$

$$\left\{ \begin{array}{ll} (i)_{\sigma} & \sigma(t,.): \mathbb{R}^d \rightarrow \mathbb{M}_{d,q} \text{ is \preceq-convex for every $t \in [0,T]$,} \\ \textit{or} \\ (i)_{\theta} & \theta(t,.): \mathbb{R}^d \rightarrow \mathbb{M}_{d,q} \text{ is \preceq-convex for every $t \in [0,T]$,} \\ \textit{and} \\ (ii) & \sigma(t,\cdot) \preceq \theta(t,\cdot) \text{ for every $t \in [0,T]$} \end{array} \right.$$

then, for every functional l.s.c. convex functional $F: \mathcal{C}([0,T],\mathbb{R}^d) \to \mathbb{R}$,

- (i) The function $x \mapsto \mathbb{E} F(X^{(\sigma),x})$ is convex from \mathbb{R}^d to $(-\infty, +\infty]$,
- (ii) Convex ordering holds: $\mathbb{E} F(X^{(\sigma)}) \leq \mathbb{E} F(X^{(\theta)}) \in (-\infty, +\infty].$

[•] By a functional inf-convolution argument, it suffices to consider $\|\cdot\|_{\text{sup}}$ -Lipschitz functionals [Jourdain-P., Fin. & Stoch., 2024].

Theorem (martingale case (strong), P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Let $\sigma, \theta \in \operatorname{Lip}_X([0,T] \times \mathbb{R}, \mathbb{M}_{d,q})$, W q-S.B.M. Let $X^{(\sigma)}$ and $X^{(\theta)}$ be the unique strong solutions to $dX_t^{(\sigma)} = \sigma(t, X_t^{(\sigma)}) dW_t, \ X_0^{(\sigma)} \in L^1 \text{ (no more } \eta!),$

$$dX_t^{(\theta)} = \sigma(t, X_t^{(\theta)})dW_t, \ X_0^{(\theta)} \in L^1 \text{ (no more } \eta!),$$

$$dX_t^{(\theta)} = \theta(t, X_t^{(\theta)})dW_t, \ X_0^{(\theta)} \in L^1, \quad (W_t)_{t \in [0, T]} \text{ standard B.M.}$$

(a) If $X_0^{(\sigma)} \leq_{cvx} X_0^{(\theta)}$ and

$$\left\{ \begin{array}{ll} (i)_{\sigma} & \sigma(t,.): \mathbb{R}^d \rightarrow \mathbb{M}_{d,q} \text{ is \preceq-convex for every $t \in [0,T]$,} \\ \textit{or} \\ (i)_{\theta} & \theta(t,.): \mathbb{R}^d \rightarrow \mathbb{M}_{d,q} \text{ is \preceq-convex for every $t \in [0,T]$,} \\ \textit{and} \\ (ii) & \sigma(t,\cdot) \preceq \theta(t,\cdot) \text{ for every $t \in [0,T]$} \end{array} \right.$$

then, for every l.s.c. convex functional $F: \mathcal{C}([0,T],\mathbb{R}^d) \to \mathbb{R}$,

- (i) The function $x \mapsto \mathbb{E} F(X^{(\sigma),x})$ is convex from \mathbb{R}^d to $(-\infty, +\infty]$,
- (ii) Convex ordering holds: $\mathbb{E} F(X^{(\sigma)}) \leq \mathbb{E} F(X^{(\theta)}) \in (-\infty, +\infty].$
- ullet By a functional inf-convolution argument, it suffices to consider $\|\cdot\|_{\text{sup}}$ -Lipschitz functionals.

Scaled/drifted martingale diffusions (extension to)

The former theorems still hold true for

$$dX_t^{(\sigma)} = \alpha(t) (X_t^{(\sigma)} + \beta(t)) dt + \sigma(t, X_t^{(\sigma)}) dW_t^{(\sigma)},$$

$$dX_t^{(\theta)} = \alpha(t) (X_t^{(\theta)} + \beta(t)) dt + \theta(t, X_t^{(\theta)}) dW_t^{(\theta)},$$

where $\alpha(t) \in \mathbb{M}_{d,d}(\mathbb{R})$ and $\beta(t) \in \mathbb{R}^d$ are continuous.

Change of variable:

$$\widetilde{X}_t^{(\sigma)} = e^{-\int_0^t \alpha(s)ds} (X_t^{(\sigma)} + \beta(t)).$$

• Finance: spot interest rate $\alpha(t) = r(t)\mathbf{1}$ and $\beta(t) = 0$ since typical (risk-neutral) dynamics of traded assets read

$$dS_t = r(t)S_t dt + S_t \sigma(S_t, \omega) dW_t$$

• For more general drifts b(t,x) when d=q=1: functional version of Hajek's theorem: monotone functional convex order holds true if

$$\forall t \in [0, T], b(t, .)$$
 is convex.

Strategy of proof (constructive)

- Time discretization (preferably) accessible to simulation: typically the Euler scheme.
- Propagate convexity (marginal or pathwise)
- Propagate comparison (marginal or pathwise)
- Transfer by functional limit theorems "à la Jacod-Shiryaev" (weak setting) or $L^1 \| \cdot \|_{\text{sup}}$ -convergence of the "regular" Euler scheme.

Step 1: discrete time ARCH models

• ARCH dynamics: Let $(Z_k)_{1 \le k \le n}$ be a sequence of independent, symmetric r.v. on $(\Omega, \mathcal{A}, \mathbb{P})$. Two ARCH models: $X_0, Y_0 \in L^1(\mathbb{P})$,

$$X_{k+1} = X_k + \sigma_k(X_k) Z_{k+1},$$

 $Y_{k+1} = Y_k + \theta_k(Y_k) Z_{k+1}, \quad k = 0: n-1,$

where σ_k , $\theta_k : \mathbb{R} \to \mathbb{R}$, k = 0 : n - 1 have linear growth.

Proposition (Propagation result)

If σ_k , k = 0 : n - 1 are \leq -convex with linear growth,

$$X_0 = x$$
 and $\forall k \in \{0, \dots, n-1\}, \quad \sigma_k \leq \theta_k$

then, for every convex funtion $F:(\mathbb{R}^d)^{n+1} \to \mathbb{R}$ convex with linear growth

$$x \longmapsto \mathbb{E} F(x, X_1^x, \dots, X_n^x)$$
 is convex.

Partial proof (marginal) with Gaussian white noise

- $Z_k \stackrel{d}{=} \mathcal{N}(0, I_q)$, $1 \le k \le n$, or simply radial.
- Let $f: \mathbb{R}^d \to \mathbb{R}$ be a convex function. Let

$$P_k^{\sigma}f(x) := \mathbb{E}f(x + \sigma_k(x)Z) = \left[\mathbb{E}f(x + AZ)\right]_{|A = \sigma_k(x)}.$$

- Set $\mathbb{M}_{d,q} \ni A \mapsto Qf(A) := \mathbb{E} f(x + AZ)$ is right O(q)-invariant, convex and \preceq -non-decreasing for convex ordering by the starting example.
- Then $P_k^{\sigma}f$ is convex since $\forall x, y \in \mathbb{R}^d$ and $\forall \lambda \in [0,1]$

$$P_{k}^{\sigma}f(\lambda x + (1-\lambda)y) = Qf(\sigma_{k}(\lambda x + (1-\lambda)y))$$

$$\leq Qf(\lambda\sigma_{k}(x) + (1-\lambda)\sigma_{k}(y))$$

$$\leq \lambda Qf(\sigma_{k}(x)) + (1-\lambda)Qf(\sigma_{k}(y))$$

$$= \lambda P_{k}^{\sigma}f(x) + (1-\lambda)P_{k}^{\sigma}f(y).$$

Hence

$$x \longmapsto \mathbb{E} f(X_n^x) = P_{1:n}^{\sigma} f(x) := P_1^{\sigma} \circ \cdots \circ P_n^{\sigma} f(x)$$
 is convex

Theorem (Discrete time comparison result)

If all σ_k , k = 0: n - 1 or all θ_k , k = 0: n - 1 are \leq -convex with linear growth,

$$X_0 \leq_{cvx} Y_0$$
 and $\forall k \in \{0, \ldots, n-1\}, \quad \sigma_k \leq \theta_k$

then

$$(X_0,\ldots,X_n) \leq_{cvx} (Y_0,\ldots,Y_n).$$

Partial proof (1-marginal) with Gaussian white noise

- Backward induction on k.
- For k = n. Let $f : \mathbb{R}^d \to \mathbb{R}$ be a (Lipschitz) convex function.

$$\sigma_n \leq \theta_n \Longrightarrow P_n^{\sigma} f(x) = Qf(\sigma_n(x)) \leq Qf(\theta_n(x)) = P_n^{\theta} f(x)$$

by non-decreasing \leq -monotony of Q.

• Assume $\underbrace{P_{k+1:n}^{\sigma}f}_{\text{convex}}:=P_{k+1}^{\sigma}\circ\cdots\circ P_{n}^{\sigma}\leq P_{k+1:n}^{\theta}f$. Then

$$A \in \mathbb{M}_{d,q} \longmapsto Q(P_{k+1:n}^{\sigma}f)(A)$$
 is \leq -non-decreasing

so that
$$P_{k:n}^{\sigma}f(x) = P_k^{\sigma}(P_{k+1:n}^{\sigma})f(x) = Q(P_{k+1:n}^{\sigma}f)(\sigma_k(x)) \stackrel{\downarrow}{\leq} Q(P_{k+1:n}^{\sigma}f)(\theta_k(x))$$

$$Q \text{ is a positive operator } \leq Q(P_{k+1:n}^{\theta}f)(\theta_k(x))$$

$$= P_{k:n}^{\theta}f(x).$$

Hence

$$\mathbb{E} f(X_n^{\sigma}) = \mathbb{E} P_{1:n}^{\sigma} f(X_0) \leq \mathbb{E} P_{1:n}^{\sigma} f(Y_0) \leq \mathbb{E} P_{1:n}^{\theta} f(Y_0) = \mathbb{E} f(X_n^{\theta}).$$

Functional approach

- By "functional" we mean here : $F(X_0,\ldots,X_n)$ with $F:(\mathbb{R}^d)^{n+1}\to\mathbb{R}$ convex.
- Same strategy by induction
- But entirely backward.

Step 2 of the proof: Back to continuous time

▷ Euler scheme(s): Discrete time Euler scheme with step $\frac{T}{n}$, starting at x is an ARCH model. For $X^{(\sigma)}$: for k = 0, ..., n - 1,

$$\bar{X}_{t_{k+1}^n}^{(\sigma),n} = \bar{X}_{t_k^n}^{(\sigma),n} + \sigma(t_k^n, \bar{X}_{t_k^n}^{(\sigma),n}) (W_{t_{k+1}^n} - W_{t_k^n}), \ \bar{X}_0^{(\sigma),n} = x$$

Set

$$Z_k = W_{t_k^n} - W_{t_{k-1}^n}, \ k = 1, \dots, n$$

$$\downarrow \downarrow$$

discrete time setting applies

Remark. Linear growth of σ and θ , implies that if $X_0^{(\sigma)}$, $X_0^{(\theta)} \in L^p(\mathbb{P})$ for some $p = 1 + \eta > 1$, then

$$\sup_{n\geq 1} \Big\| \sup_{t\in [0,T]} |\bar{X}_t^{(\sigma),n}| \Big\|_p + \sup_{n\geq 1} \Big\| \sup_{t\in [0,T]} |\bar{X}_t^{(\theta),n}| \Big\|_p \leq C (1 + \|X_0^{(\sigma)}\|_p + \|X_0^{(\theta)}\|_p) < +\infty.$$

From discrete to continuous time

\triangleright Interpolation $(n \ge 1)$

Piecewise affine interpolator defined by

$$\forall x_{0:n} \in \mathbb{R}^{n+1}, \ \forall k = 0, \dots, n-1, \ \forall t \in [t_k^n, t_{k+1}^n],$$

$$i_n(x_{0:n})(t) = \frac{n}{T} ((t_{k+1}^n - t)x_k + (t - t_k^n)x_{k+1})$$

• $\widetilde{X}^{(\sigma),n}:=i_n\Big((\bar{X}_{t_k^n}^{(\sigma),n})_{k=0:n}\Big)=$ piecewise affine Euler scheme.

Figura: Interpolator

▶ Let $F : C([0, T], \mathbb{R}) \to \mathbb{R}$ be a convex functional (with *r*-poly. growth).

$$\forall n \geq 1, \qquad F_n : \mathbb{R}^{n+1} \ni x_{0:n} \longmapsto F_n(x_{0:n}) := F(i_n(x_{0:n})).$$

• Step 1 (Discrete time): $F(\widetilde{X}^{(\sigma),n}) = F_n((\bar{X}^{(\sigma),n}_{t_n^n})_{k=0:n}$ and

$$F \text{ convex} \Longrightarrow F_n \text{ convex}, n \ge 1.$$

Discrete time result implies since $\sigma(t_k^n,.) \leq \theta(t_k^n,.)$.

$$\mathbb{E} F(\widetilde{X}^{(\sigma),n}) = \mathbb{E} F_n((\bar{X}_{t_k^n}^{(\sigma),n})_{k=0:n}) \leq \mathbb{E} F_n((\bar{X}_{t_k^n}^{(\theta),n})_{k=0:n}) = \mathbb{E} F(\widetilde{X}^{(\theta),n}).$$

 Step 2 (Weak transfer here): See e.g. [Jacod-Shiryaev's book, 2nd edition, Theorem 3.39, p.551].

$$\widetilde{X}^{(\sigma),n} \xrightarrow{\mathcal{L}(\|.\|_{\text{sup}})} X^{(\sigma)}$$
 as $n \to \infty$.

combined with uniform integrability (by $L^{1+\eta}(\mathbb{P})$ -boundedness) yield

$$\mathbb{E} F(X^{(\sigma)}) = \lim_{n} \mathbb{E} F(\widetilde{X}^{(\sigma),n}) \qquad (idem \text{ for } X^{(\theta)}).$$

Figura: How to use this result?

The Euler scheme provides a simulable approximation

which preserves convex order.

Is convexity necessary? $\sigma(t,x) = \sigma(x), d = 1$

• Note that when $\vartheta = \sigma$, a posteriori ordering \Rightarrow convexity since

$$\delta_{\lambda x + (1-\lambda)y} \leq_{cvx} \lambda \delta_x + (1-\lambda)\delta_y$$

and $\sigma(\cdot) \leq \sigma(\cdot)$ (sic!) so that

$$\mathbb{E} F(X^{\lambda x + (1-\lambda)y}) \le \lambda \mathbb{E} F(X^x) + (1-\lambda)\mathbb{E} F(X^y).$$

• One shows [Jourdain-P '23] that (when d=1)

$$\sqrt{\frac{2}{\pi}}|\sigma(x)| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}|X_t^{\times} - x| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}|X_t^{\times} - X_0^{\times}| = \lim_{t \to 0} \frac{1}{\sqrt{t}} \mathbb{E}F(X^{\times})$$

with $F(\alpha) = |\alpha(t) - \alpha(0)|$ an (only) 2-marginal functional convex functional.

- As sooon as convexity propagation for 2-marginal functional holds true then $|\sigma|$ is convex !!
- The convexity assumption on σ or ϑ is mandatory ... except maybe for 1-marginal convex order when d = q = 1.

For the 1D diffusion (after [El Karoui et al.])

- Let $\varphi(x) = \mathbb{E} f(X_T^x)$ with $f: \mathbb{R} \to \mathbb{R}$ convex with right derivative f_r' .
- One has by pathwise differentiation

$$\varphi'(x) = \mathbb{E} \left[f_r'(X_T^{\times}) e^{\int_0^T \sigma'(X_s^{\times}) dW_s - \frac{1}{2} \int_0^T (\sigma')^2 (X_s^{\times}) ds} \right]$$

$$= \dots$$

$$= \mathbb{E}_{\mathbb{O}} f_r'(Y_T^{\times}) \quad \text{Girsanov !}$$

- $x \mapsto Y_T^x$ is non-decreasing (under light assumptions on σ , cf. e.g. [Revuz-Yor])
- Finally, f_r' being non-decreasing,

$$\varphi': x \longmapsto \mathbb{E}_{\mathbb{Q}} f'_r(X^x_T)$$
 is non-decreasing

so that (almost ...) whatever σ is

$$\varphi: x \longmapsto \mathbb{E} f(X_T^x)$$
 is convex.

• So 1D setting for 1-marginal functionals is special!

Conclusions (for diffusions)

- True functional convex ordering needs convexity of σ or θ in any dimension.
- Convexity of true functionals $x \mapsto \mathbb{E} F(X^{\sigma,x})$ needs convexity of σ in any dimension.
- In one dimension, 1-marginal convexity propagation and ordering does not need convexity: it's fro free.
- And that's it (for brownian diffusions)!

• If you are (really) interested to know more (1D jumpy Lévy driven SDE, Optimal stopping and American options, Stochastic Control and swing options/gas storage, McKean-Vlasov SDEs, Volterra equations, (not Markov!) etc), have a look at my 2024 Bachelier course. Slides available at

www.bachelier-paris.fr/cours/

Merci de votre attention!