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Introduction

Definitions

Definition (Convex order, peacock)

(a) Two R9-valued random vectors U, V € L}(P) are ordered w.r.t. convex order,
denoted
U jCVX V

if, for every @ ! Rd — R, CONVEX, [¢ Lipschitz is enough (Jourdain-P. 2023) by an inf convolution argument],
E¢(U) < E¢(V) € (—o00,+00].

(b) A stochastic process (X,)y>0 is a p.c.o.c. (for “processus croissant pour |'ordre
convexe") if
u — X, is non-decreasing for the convex order.

@ Then EU =EV [p(x) = +x, i = 1:d], and, if both lie in L2 [p(x) = |x|?],
Var(U) < Var(V).
where Var(U) = E|U — E UJ.
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Introduction
Examples and motivation

@ If (Xt)¢>0 is a martingale, then (X;)¢>o is a p.c.o.c./peacock: let 0 < s < t,
Ep(Xs) = E (p(E(X:|X:))) < E(E(p(X:)|Xs)) = Ep(Xe).

Jensen

@ Example: Gaussian distributions (centered): Let Z ~ A(0, /;) on R? and let
A, Be M(d, q) be d x g matrices

(A= B i.e. BB* — AA* € §7(d)) <= AZ Z.x BZ
i.e. N(0,AA*) Zax N (0, BB*) [still true if 7 is radial: Z ~ 02,V O € O(d), Jourdain-P. 2022].
Proof: Let Z1,Z, ~ N(0; I;) be independent and set
X1 =AZ1, Xo =X+ (BB* — AA*)Y/2Z7,.
Then (X1, X2) is an R%-valued martingale and X; ~ N(0, BB*).
Scalar case d = g = 1: |o| < |9] <= N(0,0°) <cx N(0,9?).
1D-proof: ¢ : R — R convex and Z¢€ L'. Then, by Jensen's <,

u— Ep(uZ) is convex and attains its minimum ¢(0) at v = 0.

Hence u — E p(uZ) is non-decreasing on R, and non-increasing on R_.
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Introduction

About the converse of “martingale = p.c.o.c.”

@ Strassen’s Theorem (1965): u <qx v <= 3 transition P(x, dy) s.
v=pP and VxeRY, /y P(x,dy) = x.
o Kellerer's Theorem (1972): X is a p.c.o.c <=

there exists a martingale (M;)¢>0 such that Xt M, t >0,

i.,e. X isa "“l-martingale”.
@ Both proofs are unfortunately non-constructive.

@ In Hirsch, Roynette, Profeta & Yor's monography, many (many...)
explicit “representations” of p.c.o.c. by true martingales.
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Introduction

Representation of a p.c.o.c.

G. Pagés (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 5/28



Introduction

A revival motivated by Finance. ..

O'Wtf

. 2t .
@ A starter! t being fixed, o+ e "2 is a p.c.0.c. since

021.‘
eo2:="2 (= o-martingale).

2
]

Vo>0, e

oW;—

2
@ Application to Black-Scholes model 57 = spe” 2. For every

convex payoff function ¢ : Ry — R4
0<o <o = Ep(S7) <Ee(S7).

e Vanilla options: Call and Put options: ¢(S;) = (S, — K)™,
p(57) = (K= 5;)", etc.
o Path-dependent options (Asian payoffs). Let ¢ : Ry — R4 convex

o — Premium(o) = E["O('}'/Tiﬂv;—Z/dt)} !
0

- <t
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Introduction

@ P. Carr et al. (2008): Non-decreasing in o when ¢(x) = (x — K)* (Asian
Call) using PDEs.

@ Baker-Yor (2010):

1 T w, o2t 1 w uo?T d 1 w, uo?T
o spe? tT T dt = speVue?TT T dy = spe’eTT 7T du
T Jo 0 0

where (W, ¢)u.t>0 is a standard Brownian sheet (!). Hence a p.c.o.c. since

1
_ut . .
t |—>/ oVt 2 du is an (F1,t)e>0-martingale.
0

with F1: = o(W,s, 0 <u<1,0<s<t).

@ Yields bounds on the option prices.

'E W, Wys = (uAv)(tAs).
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Introduction

> This suggests many other (new or not so new) questions !

Monotone (non-decreasing) convex order : 3 drif b! [Hajek, 1985].

Functional convex order I: switch from BS to local volatility models
ieo~o(x) o—E f(X-(,-U)) [see e.g. El Karoui-Jeanblanc-Schreve, 1998].

m-marginal path-dependent convex order: e.g. E f(X(T?),X-(,-Z)) if
m = 2. [see e.g.Brown, Rogers, Hobson 2001, Riischendorf et al. 2008]

Functional convex order II: from E f(X-(,-U)) to EF(X() ie.
path-dependent convex order [P.2016].

Bermuda options [Pham 2005, Riischendorf 2008], American options [P.
2016].

Jump (risky asset) dynamics for (X,_SU)) ? [Riischendorf-Bergenthum 2007,
P. 2016]

P.c.o.c. trough Martingale Optimal Transport. [Beigelbock,

Henry-Labordere et al., 2013, Tan et al. 2015, Jourdain-P. 2022].
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Introduction

Aims and m

@ Unify and generalize these results with of focus on functional aspects
(path-dependent payoffs) (like Asian options) i.e. both functional
convex order | and Il. With a. ..

@ Constraint: provide a constructive method of proof

e based on time discretization of continuous time martingale dynamics
(risky assets in Finance) .

e using numerical schemes that preserve the functional convex order
satisfied by the process under consideration. ..

e e.g. to avoid “convexity arbitrages” in Finance.

© Formulate a paradigm and apply it to various frameworks:

e American style options, jump diffusions, stochastic integrals [P.2016, Sé.
Prob.],

@ Stochastic Control and applications to swing options [P.-Yeo 2016],

o McKean-Vlasov diffusions, MFG [Liu-P. 2022, SPA] and [Liu-P. 2023, AAP],

e Volterra equations and rough volatility [Jourdain-P. Fin. & Stoch., to appear
2024],

@ Branching processes, Forward utilities, G-expectation ? Etc.
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Introduction
Example Ill: risk measure

Let X € L'P be representative of a loss (with no atom for convenience) with
cdf F,.

Let € (0,1], « ~ 1 be a risk level. Then
VaR,(X) := (F,)""(@) and CVaR.(X):=E(X|X > Var,(X))

Rockafeller-Uryasev's representation of these two risk measures

1
L, = — EX =97
X =6+ ——E(X-¢)
satisfies o¢L, x(6) =1 — 2-P(X > ¢).

VaR,(X) = argmingl, x and CVaR,(X) = m]Rjn Lo x.
As a consequence
X Siew Y = La,X < La,Y

so that
CVaR,(X) < CVaR,(Y).

WARNING! Not true for the value-at-risk.
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Martingale (and scaled) Brownian diffusions

Martingale (and scaled) Brownian diffusions

@ Pre-order < on M(d, q,R): let A, B€ My 4.
A=<B if BB*—AA*e S*(d,R).

>1Ifd=gqg=1, a<biff a < b® iff |[a] < |b|
@ =-Convexity: o : R = My 4 is <-convex if

Vx, y€ RY, A€ [0,1], there exists Oz x, Ox,, € O(q) such that

U()\X +(1=X)y) 2 A (x)Oxrx + (1 = N)o(y)Ox,y

i.e.
oo (Ax+ (L= A)y) < (Aa(x)Oxx + (1 = N)a(¥)Ox,y ) (Ao(x)Oax + (1 = X)o(y)Ox,y) "
@ Criterion.

oo* (Ax+(1=N)y) < (Woo* (x)+(1-A)Voo*(y)) (AWoo* (x)+(1-A\)Vaoo*(y))"
@ d =g =1: |o| convex (with Ox x = sign(o(x))).
@ d,q>2: o(x) = ADiag(A14(x)) O, A€ My 4, O€ O(q) with

[Ail, i=1,...,q, convex.

G. Pagés (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 11/28



Martingale (and scaled) Brownian diffusions

, P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Theorem (martingale case

Leto,0¢e Clinx([oa T] x R, Mdﬁq)'
dX{? = o(t, XINdW X e L1, > 0

dx(® 0(t, X dw?, XD e 117, both (W),cp0.7) standard B.M.
(a) I XS < X3P and
(Yo o(t,.) : RY — My 4 is <-convex for every t€ [0, T],

or
(e 0O(t,.) :RY — My 4 is <-convex for every t€ [0, T],

and
(i) o(t,:) 2 0(t,-) for every te [0, T]

then, for every functional |.s.c. convex fucnctional F : C([0, T],R?) — R,

(i) The function x — E F(X(?)X) is convex from R? to (—o0, +oc],

(i) Convex ordering holds: EF(X©) <EF(X®)e (-0, +o0].

® By a functional inf-convolution argument, it suffices to consider || - ||sup-Lipschitz functionals [Jourdain-P., Fin. & Stoch.,

2024].
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Martingale (and scaled) Brownian diffusions

Theorem (martingale case , P. 2016, Fadili-P. 2017, Jourdain-P. 2022)

Leto,0€ Lip, ([0, T] x R,My4), W q-S.B.M.. Let X(©) and X®) be the unique
strong solutions to
dx(?) = o(t, X(U))th7 (@) 11 (no more 1),

dx® = o(t, x'dw,, ég)e L', (W4)eep, 7] standard B.M.
(a) 1 XS < X$P and
(Yo o(t,.) : RY — My 4 is <-convex for every t€ [0, T],
or
(Yo 0O(t,.): RY — My 4 is <-convex for every t€ [0, T],

and
(i) o(t,:) 2 0(t,-) for every te [0, T]

then, for every l.s.c. convex functional F : C([0, T],R?) — R,

(i) The function x — B F(X(?)*) is convex from R? to (—o0, +oc],

(i) Convex ordering holds: EF(X@)) <EF(X®)e (—o0, +o].

® By a functional inf-convolution argument, it suffices to consider || - ||sup-Lipschitz functionals.
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Martingale (and scaled) Brownian diffusions

Scaled/drifted martingale diffusions (extension to)

@ The former theorems still hold true for
dX(7) = a(t) (X7 + (1)) dt + (£, X{7)d WL,
dX{ = a(t) (X + B(t)) dt + 6(t, XDy aW?),

where a(t) € My 4(R) and 3(t)€ RY are continuous.
@ Change of variable:

X = e o et9)ds () 4 ().

e Finance: spot interest rate a(t) = r(t)1 and §(t) = 0 since typical
(risk-neutral) dynamics of traded assets read
d5t = r(t)Stdt + StO'(St,LU)th

e For more general drifts b(t, x) when d = g = 1: functional version of
Hajek's theorem: monotone functional convex order holds true if

Vte [0, T], b(t,.)is convex.
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Martingale (and scaled) Brownian diffusions

Strategy of proof (constructive)

e Time discretization (preferably) accessible to simulation: typically the
Euler scheme.
e Propagate convexity (marginal or pathwise)

@ Propagate comparison (marginal or pathwise)

Transfer by functional limit theorems “a la Jacod-Shiryaev” (weak
setting) or L1 || - ||lsup-convergence of the “regular” Euler scheme.
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Martingale (and scaled) Brownian diffusions
Step 1: discrete time ARCH models

e ARCH dynamics: Let (Zx)1<k<n be a sequence of independent,
symmetric r.v. on (2, 4,P). Two ARCH models: Xp, Yo € L}(P),

Xir1 = Xi+ 0k(Xk) Zig1,
Yie1r = Y+ 60k(Yk) Zks1, k=0:n-1,

where gy, 0 : R — R, k =0: n— 1 have linear growth.

Proposition (Propagation result)

If o, k =0:n—1 are <-convex with linear growth,
Xo=x and Vke{0,...,n—1}, ok =< b,
then, for every convex funtion F : (R9)"*1 — R convex with linear growth

x— EF(x,X{..., X)) s convex.

v
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Martingale (and scaled) Brownian diffusions

Partial proof (marginal) with Gaussian white noise

o 7 g/\/'(0, lg), 1 < k < n, or simply radial.
o Let f: RY — R be a convex function. Let

P f(x) :=Ef(x+ ok(x)Z) = [E f(x+ AZ)] Ao ()"
o Set My o3 A Qf(A) :=Ef(x+ AZ) is right O(q)-invariant,

convex and =-non-decreasing for convex ordering by the starting
example.
Then P{f is convex since Vx, y € R? and VA€ [0, 1]
PIf(Ax+ (1= N)y) = Qf (au(Ax + (1 = N)y))
<Qf (Aok(x) + (1 = N)ow(y))
<AQf (ok(x)) + (1 = X)Qf (o (y))
= APIF(x)+ (1 = AP f(y).

@ Hence
x+— Ef(X)) =Py, f(x):=P{o---0PJf(x) is convex
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Martingale (and scaled) Brownian diffusions

Theorem (Discrete time comparison result)

Ifalloy, k=0:n—1orall 8, k=0:n—1 are <-convex with linear
growth,

Xo < aux Yo and Vke {0,...,[7—1}, Ukjek,

then

(Xoy - -+ Xn) Zewx (Yo, .., V).
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Martingale (and scaled) Brownian diffusions

Partial proof (1-marginal) with Gaussian white noise

@ Backward induction on k.
@ For k =n. Let f : RY — R be a (Lipschitz) convex function.
0= by = Py f(x) = Qf (0a(x)) < QF (6a(x)) = P, f(x)
by non-decreasing <-monotony of Q.
® Assume Py, f:=Pg 0---0PJ <PJ . f. Then

A€ Mg,q — Q(P71.,f)(A) is <-non-decreasing

1
so that Py, f(x) = P{(P{i1)f(x) = Q(Pliraf) (0k(x)) < Q(Piirnf) (0x(x))
Q is a positive operator < Q(P,(j_,,_l:nf) (Hk(x))
— P ().
@ Hence

Ef(X]) =EP,f(X) < EPL,f(Yo) < EPL,f(Yo) = Ef(X,).

G. Pagés (LPSM) Functional Convex Ordering of Processes LPSM-Sorbonne Univ. 19/28



Martingale (and scaled) Brownian diffusions

Functional approach

@ By “functional” we mean here : F(Xy,...,X,) with F: (RY)"1 = R
convex.

@ Same strategy by induction

@ But entirely backward.
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Martingale (and scaled) Brownian diffusions
Step 2 of the proof: Back to continuous time

> Euler scheme(s): Discrete time Euler scheme with step % starting at x
is an ARCH model. For X(?): for k =0,...,n—1,

KM = KO 4 (e RO (Wep, - W), X" = x

n
ter1

Set
Zk:WfL’*Wle’ k:].,...,n

4

discrete time setting applies

Remark. Linear growth of ¢ and 6, implies that if XOU), ée) € LP(P) for
some p=1+mn>1, then

sup [ X"
te[0,T]

sup

sup |)_<t(0)’"| H +sup
n>1 P

o 0
< CAHIXE o+ X5 p) < oo
te[o,T] n>1 p
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Martingale (and scaled) Brownian diffusions
From discrete to continuous time

> Interpolation (n > 1)
@ Piecewise affine interpolator defined by

Vxon € R™ Vk=0,....n—1, Vte [t t,4],
) n
in(x0:n)(t) = 7((tl’<7+1 — t)xk + (t — tl’:)XkH)
o X@hn.— i (()_(t(g)m)k:o:n) = piecewise affine Euler scheme.

i P
Phen  <xx «

n (('tL)L.,,_J A~

24 Ay

LT
»

Figura: Interpolator
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Martingale (and scaled) Brownian diffusions

> Let F: C([0, T],R) — R be a convex functional (with r-poly. growth).

Yn>1, Fo: R™ 2 xg.0 — Fo(X0:n) == F (in(X0:n))-

@ Step 1 (Discrete time): F()~((")’ ) =Fn ((Xt( o) "k=0.n and
F convex = F, convex, n > 1.
Discrete time result implies since o(t],.) < 6(t7,.).
B F (1)) = B Fy (" )eon) < B Fy (X7} o) = B F(X007).
@ Step 2 (Weak transfer here): See e.g. [Jacod-Shiryaev's book, 2™ edition,
Theorem 3.39, p.551].

n £l IIsup)

Xx(@)n X as n = 0.

combined with uniform integrability (by L'*"(IP)-boundedness) yield

EF(X®) =limEF(X")  (idem for X)),
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Martingale (and scaled) Brownian diffusions

0 <

Figura: How to use this result 7

‘The Euler scheme provides a simulable approximation

which preserves convex order.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Is convexity necessary ? o(t,x) =o(x), d =1

@ Note that when ¥ = o, a posteriori ordering = convexity since
5)\x+(17)\)y =evx )\5x + (1 - >\)5y
and o(-) < o(+) (sic!) so that
E F(XMHA=2Y) < AR F(XX) + (1 — A)E F(XY).

@ One shows [Jourdain-P '23] that (when d = 1)

\/§|a(x)| = lim ZEIX;—x| = lim Z-BIX; =G = lim —BF(x")
with F(a) = |a(t) — «(0)| an (only) 2-marginal functional convex
functional.

@ As sooon as convexity propagation for 2-marginal functional holds
true then |o| is convex !!

@ The convexity assumption on ¢ or 1) is mandatory ...except maybe
for 1-marginal convex order when d = g = 1.
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

For the 1D diffusion (after [El Karoui et al.])

o Let p(x) =Ef(X¥) with f : R — R convex with right derivative /.

@ One has by pathwise differentiation
(x) = E[f(X5) el o/ 01w} [ 0x0)as]

= Eqf/(Y¥) Girsanov !

@ x — Y7 is non-decreasing (under light assumptions on o, cf. e.g.
[Revuz-Yor])
e Finally, f/ being non-decreasing,

¢ x — Eq f;(X¥) is non-decreasing
so that (almost ...) whatever o is
¢ x — Ef(X7) is convex.

@ So 1D setting for 1-marginal functionals is special !
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Martingale (and scaled) Brownian diffusions = Back to 1D (Jourdain-P. '23, ArXiv)

Conclusions (for diffusions)

@ True functional convex ordering needs convexity of o or @ in any
dimension.

e Convexity of true functionals x — E F(X7*) needs convexity of o in
any dimension.

@ In one dimension, 1-marginal convexity propagation and ordering does
not need convexity: it's fro free.

@ And that's it (for brownian diffusions) !
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Back to 1D (Jourdain-P. '23, ArXiv)

Martingale (and scaled) Brownian diffusions

o If you are (really) interested to know more (1D jumpy Lévy driven
SDE, Optimal stopping and American options, Stochastic Control and
swing options/gas storage, McKean-Vlasov SDEs, Volterra equations,
(not Markov !) etc), have a look at my 2024 Bachelier course. Slides

available at

www.bachelier-paris.fr/cours/

Merci de votre attention !

LPSM-Sorbonne Univ. 28/28

G. Pagés (LPSM) Functional Convex Ordering of Processes


www.bachelier-paris.fr/cours/

	Introduction
	Martingale (and scaled) Brownian diffusions
	Back to 1D (Jourdain-P. '23, ArXiv)


